Exercise devices – Having specific electrical feature – Equipment control
Reexamination Certificate
2001-06-15
2002-09-24
Richman, Glenn E. (Department: 3764)
Exercise devices
Having specific electrical feature
Equipment control
C482S008000, C482S900000
Reexamination Certificate
active
06454679
ABSTRACT:
BACKGROUND OF THE INVENTION AND DETAILED DESCRIPTION
The present invention is related to exercise training devices and methods, more particularly to devices and methods for targeting specific muscle fiber types and/or operating at extrema of a force-velocity-duration space of the athlete using sport specific motions and/or accurately measuring “intensity” of exercise, particularly for the training of athletes requiring leg strength, and especially athletes utilizing bipedal locomotion, and still more particularly to devices and methods for training athletes utilizing bipedal locomotion by targeting specific muscle fiber types and/or operating at extrema of a force-velocity-duration space of the athlete using sport specific motions and/or accurately measuring “intensity” of exercise.
Due to the increasing awareness of the effects of exercise on health and longevity, and due to the increased financial resources associated with professional sports over the past few decades, exercise physiology has been a rapidly growing field of study, and exercise equipment is a burgeoning industry. Yet, with all the resources applied to the design and development of exercise equipment, there is a lack of exercise equipment and monitoring methods designed specifically to allow one to target specific types of muscle fiber, and/or operate at multiple extrema of the force-velocity-duration space (particularly in the course of sport-specific motions, especially sport-specific motions requiring bipedal locomotion), and/or accurately measuring “intensity” of exercise.
In the field of exercise physiology, the mechanical specificity principle states that muscle development for a sport is most beneficial when the training regimens involve muscle exertions at forces and velocities matching those used in the sport. Similarly, the movement specificity principle states that muscle development for a sport is most beneficial when the training regimens involve motions with muscle synchronizations similar to those used in the sport. Exertions providing benefits according to the movement specificity principle therefore comprise a subset of exertions providing benefits according to the mechanical specificity principle. These two principles are the motivation for “sport-specific training,” i.e., training involving sport-specific motions, since that is believed to be the most effective means of improving athletic performance in a particular sport. Although the fitness equipment industry has produced a wide variety of exercise bicycles, rowing machines, stair simulators, elliptical trainers, etc., in general an athlete cannot perform the modes of motion associated with most sports, particularly sports involving bipedal locomotion, on such exercise machines. Therefore, a major obstacle to the practice of sport-specific training is the difficulty of training in a focused manner using the modes of motion involved in a sport.
Even treadmill training of athletes whose sports require running has severe limitations, since the majority of athletes do not engage in bipedal locomotion without direction changes at a constant velocity over long durations (the exception possibly being distance runners). In most sports, athletes are required to accelerate and decelerate, sometimes abruptly, at a variety of velocities, and in a variety of directions. Even the motions performed by a sprinter involve, upon closer inspection, a range of modes. To excel, a sprinter must not only be able to run at a high velocity, but must also be able to accelerate well at the beginning of a sprint, and throughout the entire acceleration portion of the sprint. A particular sprinter might not be able to accelerate well at very low velocities, but may have a high terminal velocity. In contrast, another sprinter might have good acceleration capabilities at low velocities, but may not be able to reach a high terminal velocity. And even in the acceleration phase, a sprinter may have weaknesses in acceleration ability at one or more ranges of intermediate velocities. Therefore, it would be expected that a sprinter would be expected to benefit most by training in regimes where his or her capabilities are weakest.
Another example of the varied mode requirements of an athlete is the defensive end in American football. An effective defensive end must be able to generate a large force with his legs at a low velocity in a forward direction, as well as sideways directions, to force a tackle out of the way at the line of scrimmage. Also, a defensive end must be able to generate large forces with his legs in the forward and sideways directions at intermediate velocities to accelerate when chasing a dodging ball carrier. Furthermore, a defensive end must be able to reach a high terminal velocity when he is required to chase a ball carrier that is running across open field. Therefore, a comprehensive training program for a defensive end must include focused training in each of these exertion regimes.
The apparatus and method of the present invention provide functionalities which allow for concentrated training in the wide range of exertion regimes, thereby making it useful for sport-specific training of an athlete requiring a variety of exercise modes, or for sport-specific training of a variety of types of athletes. Furthermore, the apparatus and method of the present invention can accurately monitor the capabilities of an athlete in all modes of bipedal locomotion motion involved with the athlete's sport. Furthermore, the method and apparatus of the present invention allows for the analysis of exercise performance, regardless of the modes of motion involved, through analysis of force and velocity data associated with the exercise.
It is known in the field of exercise physiology that the type of muscle fiber which is recruited is dependent on the exerted force, the velocity of the motion, and the duration of the activity. It is commonly believed that there are four types of muscle fiber: a single slow-twitch type (type I) and three fast-twitch types (type IIa, type IIb, and type IIx). Following are the hierarchies for the peak contractile velocity (V
max
) and useful exertion period (T) at maximum output of the four types of muscle fiber:
V
max
(IIb)
>V
max
(IIx)
>V
max
(IIa)
>V
max
(I)
,
and
T
(IIb)
>T
(IIx)
>T
(IIa)
>T
(I)
,
According to recent literature, fast and slow-twitch muscle fibers can generate approximately the same amount of peak force. The rate of transition from low force to high force states is apparently seven-fold higher for fast-twitch muscle fibers than for slow-twitch skeletal muscle fibers. Peak isometric (i.e., zero velocity) force is most likely therefore not dependent on muscle fiber type, although a positive correlation does exist between the percentage of fast-twitch muscle fibers in a muscle and the finite-velocity peak force. Therefore, according to methods of the present invention, training regimes of one preferred embodiment target the development of fast-twitch muscle fiber.
Slow-twitch fibers have a high concentration of oxidative enzymes, but low concentrations of glycolytic enzymes and ATPase, and their operation is predominantly powered by aerobic processes. Slow-twitch fibers have a lower maximum velocity V
max
(I)
than fast-twitch muscle fibers but, because aerobic processes are renewable due to their re-energization by oxygen-carrying blood flow to the fibers, they have a longer useful exertion period T
(I)
(i.e., are more resistance to fatigue) than fast-twitch muscle fibers.
In contrast, fast-twitch fibers have higher concentrations of ATPase and glycolytic enzymes, and lower concentrations of oxidative enzymes than slow-twitch fibers. Of the fast-twitch fibers, the type IIb fibers have the lowest concentrations of oxidative enzymes. Type IIb fibers are capable of high contractile velocities, but are unable to maintain these contraction rates for more than a few cycles without a re-energization period. At the other extreme of the fast-twitch fibers is the type IIa fibers which have higher concen
Richman Glenn E.
Shaw Laurence J.
LandOfFree
Bipedal locomotion training and performance evaluation... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bipedal locomotion training and performance evaluation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bipedal locomotion training and performance evaluation... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2825467