Biostable polycarbonate urethane products

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S196000, C528S198000, C528S201000

Reexamination Certificate

active

06177522

ABSTRACT:

The invention relates to biostable polycarbonate urethane and polycarbonate urethane urea products.
This invention relates to porous and nonporous polycarbonate urethane (PCU) polymers having a set of properties which make then suitable for long term implantation within a living human body. The polyurethane foams and elastomers of this invention comprise a PCU material that is resistant to attack by in vivo agents over extended periods of time.
BACKGROUND OF THE INVENTION
There are a series of commercially available polyurethane materials which are suitable for the manufacture of implantable medical devices. Typically these materials combine good elasticity, ultimate tensile strength, biocompatibility and biostability. However, only a small percentage of the spectrum of commercially available polyurethanes are suitable for implantation. Those that are suitable for implantation are typically based on a polyether or polycarbonate macroglycol together with a diisocyanate and a diol or diamine chain extender. Examples of these are described in EP Patent No. 461,375 (Pinchuck) and U.S. Pat. No. 5,621,065 (Pudlinear et al).
Products manufactured from conventional polyurethane materials are processed in two stages. Firstly the macroglycol, the diisocyanate and the chain extender are reacted in specific molar ratios so as to produce a polymer with a linear molecular structure. These systems are subsequently processed by any of a variety of thermomechanical or solvent based processes into geometry's suitable for implantation. Polyurethane polymers with a linear molecular structure lend themselves to processing by these techniques. Polyurethanes with three dimensional molecular structures do not lend themselves to processing by either thermomechanical or solvent techniques, rather these materials must be formed into useful articles as part of the polymerisation reaction.
The chemistry and materials of polyurethane manufacture are well known to those skilled in the art and are described in many publications such as the I.C.I. Polyurethane Handbook by George Woods (2
nd
Edition John Wiley & Sons).
Most currently available polyurethane materials are chain extended using a diol or a diamine. Diols react with the isocyanate linkage to generate urethane groups whereas amines react with isocyanates to generate urea linkages. Water can also be employed as a chain extender as it reacts with two isocyanate groups to form a urea linkage and gives off carbon dioxide in the process. The hard segment generated with water chain extenders has a high concentration of urea linkage and is thus stiff and polar. Water however is little used for chain extending biomedical polyurethanes as it generates carbon dioxide in the reaction. The inclusion of water is considered to be undesirable.
Linear polymers may be processed by either thermomechanical or solution processes. Polyurethanes with a high urea content are normally difficult to process thermomechanically and are usually solution processed. As most conventional polyurethanes are processed thermomechanically, by processes like extrusion and injection moulding, most conventional polyurethanes do not have high concentrations of urea linkages. Conventional polyurethanes are thus normally chain extended using short chain diols.
Polycarbonate based polyols have been used in the manufacture of polyurethane elastomers as described in U.S. Pat. No. 5,254,662 (Szycher), where the polycarbonates are represented by the following general formula
HO(R
1
O(CO)OR
1
)
n
OH
R
1
represents an aliphatic chain of from 2 to 20 carbon atoms, and n has a value sufficient to generate a molecular weight of from 650 to 3500 molecular weight units. The main difficulty with systems based on these polycarbonates is generating a material that is sufficiently soft and elastomeric for implantation in a soft tissue environment. This issue arises due to the regularity of the polycarbonate polyol structure.
The repeat unit of a typical polyol of the form shown above could be represented as follows:
(CH
2
CH
2
CH
2
CH
2
CH
2
CH
2
O—CO—O)
The oxygens of the carbonate linkage are more electron withdrawing than the carbons to which they are bonded. The oxygens therefore carry a slight negative charge while the carbons carry a slightly positive charge. When carbonate linkages of neighbouring chains come into close proximity the positive charges of one chain will interact in an attractive fashion with the negative charges of the other chain. The chain structure of the carbonates employed in U.S. Pat. No. 5,524,662 (Szycher) and similarly in EP 461375 (Pinchuck) contains linkages that allow the chain to take up a linear configuration. These chains containing no side groups to disrupt the regularity of the structure. These features allow the attractive forces associated with the carbonate linkage to dominate the stiffness of the polyol phase. This attraction significantly increases the stiffness characteristics of resulting PCU. The greater the concentration of carbonate linkages in this type of regular polyol phase the stiffer the resulting polyurethane will be.
The C—O linkage of the carbonate oxygen and carbon of the hydrocarbon chain could however have a low energy of rotation. This low energy of rotation should have the effect of softening the polyol phase. This is not observed to be the case because the attractive forces between the carbonates lock these rotational movements in and prevent these movements from having a significant influence on the material softness. Because polycarbonates of the type employed by Szycher and Pinchuck are very regular in structure they generate polyurethanes that are much stiffer than comparative polyether urethanes.
It is an object of the present invention to provide soft, flexible polycarbonate urethane polymers having properties making them suitable for long term implantation.
SUMMARY OF THE INVENTION
The biostable polycarbonate urethane article of this invention is made from a polycarbonate urethane prepared by the reaction of an isocyanate, a polycarbonate and a chain extender, such that the polycarbonate is a polycarbonate copolymer polyol of alkyl carbonates.
The biostable polyurethane devices of this invention are derived from organic diisocyanates and polycarbonate copolymer polyols and are chain extended with either diamine, diol, alkanol amine, water or mixtures of the above chain extenders. The reaction step converts the chemical precursors into a polymer of high molecular weight while the forming step shapes the article into the desired geometry.
Preferably, the polycarbonate copolymer polyol is a random copolymer of alkyl carbonates.
The use of random copolymers affects the bonding properties of the carbonate linkages. Hence, the polycarbonate copolymer polyols used in the manufacture of polyurethanes of this invention are designed to prevent significant interaction between neighbouring polyol chains and also to permit free rotation about the C—O bond of the carbonate oxygen and the hydrocarbon sequence. This reduces the stiffness of the material.
Most preferably the length of the alkyl chains in the alkyl carbonates varies between 2 to 16 carbon atoms.
In another embodiment, the article is made from a polycarbonate urethane comprising a polymeric molecular structure having recurring carbonate groups in combination with one or both of urea and urethane and biuret groups when urea is present and allophanate when urethane is present to form a 3-dimensional polymer molecular structure.
The isocyanates react under suitable conditions with the active hydrogens of the urethane and urea linkages to form biuret and allophanate linkages. These linkages represent points of trifurcation in the molecular structure and confer a 3-dimensional structure to the resultant polyurethane article. This 3-dimensional structure within the article, bestows the properties of high compressibility and high recoverability.
In a preferred embodiment, the isocyanate can be selected from one or more of the group of aliphatic, aliphatic alicyclic, aromatic, aromatic-ali

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biostable polycarbonate urethane products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biostable polycarbonate urethane products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biostable polycarbonate urethane products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2542245

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.