Biosensor method for detecting analytes in a liquid

Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S007100, C435S007920, C435S174000, C435S176000, C435S287100, C435S287200, C435S288700, C436S086000, C436S164000, C436S524000, C436S527000, C436S536000, C349S001000, C349S002000, C349S033000, C204S228100, C204S229800, C204S230200, C204S400000, C204S403060, C204S406000, C204S407000, C204S409000, C204S422000

Reexamination Certificate

active

06787368

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method for detecting or quantitating an analyte, and to a biosensor for carrying out the method.
BACKGROUND OF THE INVENTION
Many tools used for detecting or quantitating biological analytes are based on analyte-specific binding between an analyte and an analyte-binding receptor or agent. Analyte/analyte binding pairs encountered commonly in diagnostics include antigen-antibody, hormone-receptor, drug-receptor, cell surface antigen-lectin, biotin-avidin, and complementary nucleic acid strands.
A variety of methods for detecting analyte-binding agent interactions have been developed. The simplest of these is a solid-phase format employing a reporter labeled analyte-binding agent whose binding to or release from a solid surface is dependent on the presence of analyte. In a typical solid-phase sandwich type assay, for example, the analyte to be measured is an analyte with two or more binding sites, allowing analyte binding both to a receptor, e.g., antibody, carried on a solid surface, and to a reporter-labeled second receptor. The presence of analyte is detected (or quantitated) by the presence (or amount) of reporter bound to solid surface.
In a typical solid-phase competitive binding analyte analog for binding to a receptor (analyte-binding agent) carried on a solid support. The amount of reporter signal associated with the solid support is inversely proportional to the amount of sample analyte to be detected or determined.
The reporter label used in both solid-phase formats is typically a visibly detectable particle or an enzyme capable of converting a substrate to an easily detectable product. Simple spectrophotometric devices allow for the quantitation of the amount of reporter label, for quantifying amount of analyte.
Detecting or quantitating analyte-specific binding events is also important in high-throughput methods being developed for combinatorial library screening. In a typical method, a large library of possible effector molecules (analytes) is synthesized. The library members are then screened for effector activity by their ability to bind to a selected receptor. The approach has the potential to identify, for example, new oligopeptide antigens capable of high-specificity binding to disease related antibodies, or small-molecule compounds capable of interacting with a selected pharmacological target, such as a membrane bound receptor or cellular enzyme.
High-throughput screening methods typically employ simple analyte displacement assays to detect and quantitate analyte binding to a receptor. Displacement assays have the advantage of high sensitivity, e.g., where the displaced analyte is radiolabeled, and also allow for the determination of analyte-receptor binding affinity, based on competitive displacement of a binding agent whose binding affinity to the target receptor is known.
In both diagnostics and high-throughput screening, there is increasing interest in developing biosensors capable of detecting and quantifying analyte-receptor binding events.
One general type of biosensor employs an electrode surface in combination with current or impedance measuring elements for detecting a change in current or impedance in response to the presence of a ligand-receptor binding event. This type of biosensor is disclosed, for example, in U.S. Pat. No. 5,567,301.
Gravimetric biosensors employ a piezoelectric crystal to generate a surface acoustic wave whose frequency, wavelength and/or resonance state are sensitive to surface mass on the crystal surface. The shift in acoustic wave properties is therefore indicative of a change in surface mass, e.g., due to a ligand-receptor binding event. U.S. Pat. Nos. 5,478,756 and 4,789,804 describe gravimetric biosensors of this type.
Biosensors based on surface plasmon resonance (SPR) effects have also been proposed, for example, In U.S. Pat. No. 5,485,277. These devices exploit the shift in SPR surface reflection angle that occurs with perturbations, e.g., binding events, at the SPR interface. Finally, a variety of biosensors that utilize changes in optical properties at a biosensor surface are known, e.g., U.S. Pat. No. 5,268,305.
The interest in biosensors is spurred by a number of potential advantages over strictly biochemical assay formats. First, biosensors may be produced, using conventional microchip technology, in highly reproducible and miniaturized form, with the capability of placing a large number of biosensor elements on a single substrate (e.g., see U.S. Pat. Nos. 5,200,051 and 5,212,050).
Secondly, because small signals can be readily amplified (and subjected to various types of signal processing if desired), biosensors have the potential for measuring minute quantities of analyte, and proportionately small changes in analyte levels.
A consequence of the features above is that a large number of different analytes can be detected or quantitated by applying a small sample volume, e.g., 10-50 &mgr;l, to a single multi-sensor chip.
Heretofore, electrochemical biosensors have been more successfully applied to detecting analytes that are themselves electrochemical species, or can participate in catalytic reactions that generate electrochemical species, than to detecting analyte-receptor binding events. This is not surprising, given the more difficult challenge of converting a biochemical binding event to an electrochemical signal. One approach to this problem is to provide two separate reaction elements in the biosensor: a first element contains a receptor and bound enzyme-linked analyte, and the second element, components for enzymatically generating and then measuring an electrochemical species. In operation, analyte displaces the analyte-enzyme conjugate from the first element, releasing the enzyme into the second element region, thus generating an electrochemical species which is measured in the second element.
Two-element biosensors of this type are relatively complicated to produce, particularly by conventional silicon-wafer methods, since one or more biological layers and permselective layers must be deposited as part of the manufacturing process. Further, enzymes or receptors in the biosensor can denature on storage, and the device may have variable “wetting” periods after a sample is applied.
Biosensors that attempt to couple electrochemical activity directly to an analyte-receptor binding event, by means of gated membrane electrodes, have been proposed. For example, U.S. Pat. Nos. 5,204,239 and 5,368,712 disclose gated membrane electrodes formed of a lipid bilayer membrane containing an ion-channel receptor that is either opened or closed by analyte binding to the receptor. Electrodes of this type are difficult to make and store, and are limited at present to a rather small group of receptor proteins.
Alternatively, direct analyte/receptor binding may be measured electrically by embedding the receptor in a thin polymer film, and measuring changes in the film's electrical properties, e.g., impedance, due to analyte binding to the receptors. U.S. Pat. No. 5,192,507 is exemplary. Since analyte binding to the receptor will have a rather small effect on film properties, and since no amplification effect is achieved, the approach is expected to have limited sensitivity.
PCT patent application PCT/CA97/00275, published Nov. 6, 1997, publication No. WO 97/41424, discloses a novel electrochemical biosensor having a conductive detection surface, and a hydrocarbon-chain monolayer formed on the surface. Biosensor operation is based on the flow of an ionized redox species across the monolayer, producing a measurable current flow. In one embodiment of the biosensor disclosed, binding of an analyte to its opposite binding member attached to the surface of some of the hydrocarbon chains increases measured current flow by increasing the disorder of the monolayer, making it more permeable to the redox species. In another general embodiment, the opposite binding member is anchored to the monolayer through a coiled-coil heterodimer structure, allowing any selected binding

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biosensor method for detecting analytes in a liquid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biosensor method for detecting analytes in a liquid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biosensor method for detecting analytes in a liquid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3188616

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.