Bioresorbable hydrogel compositions for implantable prostheses

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S111000, C523S113000, C623S008000, C623S011110, C424S401000, C424S422000, C424S423000, C424S424000, C424S426000, C424S430000, C424S433000, C528S354000, C528S361000, C514S773000, C514S772200, C514S773000, C514S777000

Reexamination Certificate

active

06534560

ABSTRACT:

FIELD OF INVENTION
This invention relates generally to compositions useful as components of medical devices. Particularly, the present invention relates to cross-linkable compositions formed from a water-insoluble copolymer having a bioresorbable region, a hydrophilic region and at least two cross-linkable functional groups per polymer chain. More particularly, this invention relates to such compositions comprising an organic solution. When crosslinked and exposed to a humid environment, these compositions form bioresorbable hydrogels. Furthermore, these compositions are useful as delivery vehicles for therapeutic agents. Processes for forming such hydrogels are also disclosed, as are processes for forming medical devices having such hydrogels incorporated therein.
BACKGROUND OF RELATED TECHNOLOGY
It is generally known to provide a porous material, such as an implantable prosthesis, with a biocompatible, biodegradable sealant or coating composition which initially renders the porous material substantially fluid-impermeable. Over time, such a sealant composition is resorbed and the healing process naturally takes over the sealing function as tissue ingrowth encapsulates the prosthesis. Naturally derived, as well as chemically synthesized, sealant compositions are well-known.
An example of a medical device having a sealing means is described at column 4, lines 38-55 of U.S. Pat. No. 5,843,160. Such sealing means preclude the egress of blood and prevent endoluminal leakage. A specific example of a sealing ring or sleeve is set forth at column 11, lines 10-36.
Natural materials, such as collagen and gelatin, have been widely used on textile grafts. U.S. Pat. Nos. 4,842,575 and 5,034,265 to Hoffman Jr., et al. disclose the use of collagen as a sealant composition for grafts. More recently, co-owned and co-pending U.S. Ser. No. 08/713,801 discloses the use of a hydrogel or sol-gel mixture of polysaccharides for rendering fluid-tight porous implantable devices. Such sealant compositions are beneficial in that they are able to seal an implantable device without the need for chemical modification of the surface thereof and provide improved bioresorbability as the healing process occurs. Furthermore, fibrin, an insoluble protein formed during the blood clotting process, has also been used as a sealant for porous implantable devices.
The use of such biologically-derived sealant compositions, however, suffers from several drawbacks. One such drawback is the difficulty in producing consistent coatings due to variations inherent in natural materials. Another drawback is that the body might identify such compositions as foreign and mount an immune response thereto. Thus, biologically-based sealant compositions can cause inflammation, as well as infection, at or around the site of implantation. This might lead to life-threatening complications.
Accordingly, attempts have been made to design sealant systems from chemically synthesized materials which are easy to manufacture, which are easy to control the desired characteristics and qualities thereof, and which have less potential for causing adverse biological reactions. For example, U.S. Pat. No. 4,826,945 to Cohn et al. discloses synthetically-produced resorbable block copolymers of poly(.alpha.-hydroxy-carboxylic acid)/poly(oxyalkylene) which are used to make absorbable sutures, wound and burn dressings, and partially or totally biodegradable vascular grafts. However, these copolymers are not crosslinked. The poly(alkylene) segments of such bio-absorbable copolymers are disclosed to be water-soluble so that the body can excrete the degraded block copolymer compositions. See also, Younes, H. and Cohn, D.,
J Biomed. Mater. Res
. 21, 1301-1316 (1987) and Cohn, D. and Younes, H.,
J Biomed. Mater. Res
. 22, 993-1009 (1988). As set forth above, these compositions are not crosslinked and, as a consequence, are relatively quickly bio-absorbed. Moreover, these non-crosslinked compositions generally require the presence of crystalline segments to retain their structural integrity. As a result of such crystalline segments, these compositions have limited utility as sealants for vascular grafts.
Furthermore, U.S. Pat. No. 4,438,253 to Casey et al. discloses tri-block copolymers produced from the transesterification of poly(glycolic acid) and a hydroxyl-ended poly(alkylene glycol). Such compositions are disclosed for use as resorbable monofilament sutures. The flexibility of such compositions is controlled by the incorporation of an aromatic orthocarbonate, such as tetra-p-tolyl orthocarbonate, into the copolymer structure. The strength and flexibility which makes such a composition useful as a suture, however, does not necessarily make it appropriate for use as a sealant for a porous implantable prosthesis. Moreover, these tri-block copolymers are substantially non-crosslinked. Thus, while these compositions are somewhat hydrophilic, they do not form hydrogels.
Accordingly, attempts have been made to engineer bio-compatible hydrogel compositions whose integrity can be controlled through crosslinking. For example, U.S. Pat. Nos. 5,410,016 and 5,529,914 to Hubbell et al. disclose water-soluble systems which, when crosslinked, utilize block copolymers having a water-soluble central block segment sandwiched between two hydrolytically labile extensions. Such copolymers are further end-capped with photopolymerizable acrylate functionalities. When crosslinked, these systems become hydrogels. The water-soluble central block of such copolymers can include poly(ethylene glycol), whereas the hydrolytically labile extensions can be a poly(.alpha.-hydroxy acid), such as polyglycolic acid or polylactic acid. See, Sawhney, A. S., Pathak, C. P., Hubbell, J. A.,
Macromolecules
1993, 26, 581-587. See also, U.S. Pat. No. 5,854,382, disclosing an aqueous emulsion of water-insoluble copolymer which is crosslinked to form a hydrogel.
Furthermore, U.S. Pat. No. 5,202,413 to Spinu discloses biodegradable multi-block copolymers having sequentially ordered blocks of polylactide and/or polyglycolide produced by ring-opening polymerization of lactide and/or glycolide onto either an oligomeric diol or a diamine residue followed by chain extension with a di-functional compound, such as diisocyanate, diacylchloride, or dichlorosilane. The general structure of such a composition is R-(A-B-A-L).sub.x -A-B-A-R, where A is a polyhydroxy acid, such as polylactide, polyglycolide or a copolymer thereof, B is an oligomeric diol or diamine residue, L is a diacyl residue derived from an aromatic diacyl halide or diisocyanate, and R is H or an end-capping group, such as an acyl radical. A major difference between the compositions set forth in the Spinu '413 patent and those described by the Cohn references supra is that Spinu uses lactide blocks whereas Cohn uses lactic acid blocks. Furthermore, like the Cohn copolymers, the copolymers described in the Spinu '413 patent are not cross-linkable.
In general, all of the synthetic compositions set forth above describe copolymers having one or more segments which are water-soluble. Accordingly, many of the compositions described by these references are intended to be rapidly biodegraded by the body.
Thus, there is a need for water-insoluble, fully cross-linkable polymeric materials which are easily synthesized and provide controlled bioresorption in vivo. Moreover, there is a need for improved, cost-efficient, synthetic sealant compositions for porous, implantable prostheses which are characterized by their ability to self-emulsify and form stable, low viscosity emulsions. There is a further need for sealant compositions which are quickly cured, exist as hydrogels in an aqueous environment, and which remain flexible while dehydrated without the need for an external plasticizer. The present invention is directed to meeting these and other needs.
SUMMARY OF THE INVENTION
In one aspect of the present invention, there is provided a process for forming a covalently crosslinked composition in an organic solvent. This composition includes a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bioresorbable hydrogel compositions for implantable prostheses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bioresorbable hydrogel compositions for implantable prostheses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioresorbable hydrogel compositions for implantable prostheses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3042861

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.