Bioresorbable compositions for implantable prostheses

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S361000, C424S401000, C424S422000, C424S423000, C424S424000, C424S426000, C424S430000, C424S433000, C424S480000, C525S054100, C525S408000, C525S413000, C525S415000, C525S423000, C525S423000, C514S773000, C514S777000, C523S105000, C523S111000, C523S113000, C623S008000, C623S011110

Reexamination Certificate

active

06403758

ABSTRACT:

FIELD OF INVENTION
This invention relates generally to coating compositions for medical devices. More particularly, the present invention relates to cross-linked compositions formed from a water insoluble copolymer having a bioresorbable region, a hydrophilic region and at least two cross-linkable functional groups per polymer chain. These compositions when placed in contact with an aqueous environment form hydrogels which are useful as sealants for porous materials and particularly for implantable prostheses. Furthermore, these hydrogels can be used as delivery vehicles for therapeutic agents. Medical devices coated and/or sealed with such hydrogels, processes for forming such devices and methods of making the hydrogels are also disclosed.
BACKGROUND OF THE INVENTION
It is generally known to provide a porous substrate, such as an implantable prosthesis, with a biocompatible, biodegradable sealant or coating composition which initially renders the porous substrate fluid-tight. Over time, such a sealant composition is resorbed and the healing process naturally takes over the sealing function of the sealant composition as tissue ingrowth encapsulates the prosthesis. The art is replete with examples of naturally derived, as well as chemically synthesized sealant compositions.
Natural materials, such as collagen and gelatin, have been widely used on textile grafts. U.S. Pat. Nos. 4,842,575 and 5,034,265 to Hoffman Jr., et al. disclose the use of collagen as a sealant composition for grafts. More recently, co-owned and co-pending U.S. Ser. No. 08/713,801 discloses the use of a hydrogel or sol-gel mixture of polysaccharides for rendering fluid-tight porous implantable devices. Such sealant compositions are beneficial in that they are able to seal an implantable device without the need for chemical modification of the surface thereof and provide improved bioresorbability as the healing process occurs. Furthermore, fibrin, an insoluble protein formed during the blood clotting process, has also been used as a sealant for porous implantable devices.
The use of such biologically derived sealant compositions, however, suffers from several drawbacks. One such drawback is the difficulty in producing consistent coatings due to variations inherent in natural materials. Another drawback is that the body may identify such compositions as foreign and mount an immune response thereto. Thus, biologically-based sealant compositions can cause inflammation, as well as infection at or around the site of implantation, which can lead to life-threatening complications.
Accordingly, attempts have been made to design sealant systems from chemically synthesized materials which are easier to manufacture and control the desired characteristics and qualities and which have less potential for causing adverse biological reactions. For example, U.S. Pat. No. 4,826,945 to Cohn et al. discloses synthetically produced resorbable block copolymers of poly(&agr;-hydroxy-carboxylic acid)/poly(oxyalkylene) which are used to make absorbable sutures, wound and burn dressings and partially or totally biodegradable vascular grafts. These copolymers, however, are not crosslinked. The poly(alkylene) segments of such bio-absorbable copolymers are disclosed to be water-soluble so that the body can excrete the degraded block copolymer compositions. See also, Younes, H. and Cohn, D.,
J. Biomed. Mater. Res.
21, 1301-1316 (1987) and Cohn, D. and Younes, H.,
J Biomed. Mater. Res.
22, 993-1009 (1988). As set forth above, these compositions are uncrosslinked and, as a consequence, are relatively quickly bio-absorbed. Moreover, these uncrosslinked compositions generally require the presence of crystalline segments to retain their hydrogel-like consistency. As a result of such crystalline segments, these compositions have limited utility as sealants for vascular grafts.
Furthermore, U.S. Pat. No. 4,438,253 to Casey et al. discloses tri-block copolymers produced from the transesterification of poly(glycolic acid) and an hydroxyl-ended poly(alkylene glycol). Such compositions are disclosed for use as resorbable monofilament sutures. The flexibility of such compositions is controlled by the incorporation of an aromatic orthocarbonate, such as, tetra-p-tolyl orthocarbonate into the copolymer structure. The strength and flexibility which makes such a composition useful as a suture, however, does not necessarily make it appropriate for use as a sealant for a porous implantable prosthesis. Moreover, these tri-block copolymers are substantially uncross-linked. Thus, while compositions are somewhat hydrophilic, they do not form hydrogels.
Accordingly, attempts have been made to engineer bio-compatible hydrogel compositions whose integrity can be controlled through crosslinking. For example, U.S. Pat. Nos. 5,410,016 and 5,529,914 to Hubbell et al. disclose water-soluble systems which when crosslinked utilize block copolymers having a water-soluble central block segment sandwiched between two hydrolytically labile extensions. Such copolymers are further end-capped with photopolymerizable acrylate functionalities. When crosslinked, these systems become hydrogels. The water soluble central block of such copolymers can include poly(ethylene glycol); whereas, the hydrolytically labile extensions can be a poly(a-hydroxy acid), such as, polyglycolic acid or polylactic acid. See, Sawhney, A. S., Pathak, C. P., Hubbell, J. A.,
Macromolecules
1993, 26, 581-587.
Furthermore, U.S. Pat. No. 5,202,413 to Spinu discloses biodegradable multi-block copolymers having sequentially ordered blocks of polylactide and/or polyglycolide produced by ring-opening polymerization of lactide and/or glycolide onto either an oligomeric diol or a diamine residue followed by chain extension with a di-functional compound, such as, a diisocyanate, diacylchloride or dichlorosilane. The general structure of such a composition is R-(A-B-A-L)
x
-A-B-A-R, where A is a polyhydroxy acid, such as polylactide, polyglycolide or a copolymer thereof, B is an oligomeric diol or diamine residue, L is a diacyl residue derived from an aromatic diacyl halide or diisocyanate and R is H or an end-capping group, such as an acyl radical. A major difference between the compositions set forth in the Spinu '413 patent and those described by the Cohn references supra is that Spinu uses lactide blocks whereas Cohn uses lactic acid blocks. Furthermore, like the Cohn copolymers, the copolymers described in the Spinu '413 patent are not crosslinkable.
In general, all of the synthetic compositions set forth above describe copolymers having one or more segments which are water-soluble. Accordingly, many of the compositions described by these references are intended to be rapidly biodegraded by the body.
Thus, there is a need for water-insoluble, fully crosslinkable polymeric materials which are easily synthesized and provide controlled bioresorption in vivo. Moreover, there is a need for improved, cost-efficient synthetic sealant compositions for porous implantable prostheses which are characterized by their ability to self-emulsify and form stable low viscosity emulsions. There is a further need for sealant compositions which are quickly cured, exist as hydrogels in an aqueous environment and which remain flexible while dehydrated without the need for an external plasticizer. The present invention is directed to meeting these and other needs.
SUMMARY OF THE INVENTION
In one embodiment of the present invention, there is provided a covalently crosslinkable composition. This composition includes a water-insoluble copolymer which has a bioresorbable region, a hydrophilic region and a plurality of crosslinkable functional groups per polymer chain.
In another embodiment of the present invention, there is provided a medical device which has on at least one surface thereof a bioresorbable coating composition. This composition includes a hydrogel formed from the crosslinking of a polymer containing a bioresorbable region, a hydrophilic region, a plurality of crosslinkable functional groups and a crosslin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bioresorbable compositions for implantable prostheses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bioresorbable compositions for implantable prostheses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioresorbable compositions for implantable prostheses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2931307

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.