Bioreactor with application as blood therapy device

Chemistry: molecular biology and microbiology – Apparatus – Bioreactor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S321800, C210S321890

Reexamination Certificate

active

06582955

ABSTRACT:

FIELD OF INVENTION
The present invention relates generally to the field of biomedicine and biotechnology, and more particularly, to cell-based devices such as bioartificial liver or bioartificial kidney and blood therapy devices such as hemodialysis or hemofiltration system and methods therefore. Although the invention is subject to a wide range of applications, it is especially made suited for use as an extracorporeal blood therapy device with multiple functions integrated in a single module and will be particularly described in that connection.
BACKGROUND OF THE INVENTION
Various reactors, bioreactors, modules and cartridges (“BIOREACTORS”) used as cell culture devices and extracorporeal blood therapy devices [“(BIO)ARTIFICIAL ORGANS”] are known. Typically, the known bioreactors utilize hollow-fiber technology. An array of single and dual hollow-fiber reactors exists and their fabrication and application are well known in the prior art as shown by the teachings of U.S. Pat. Nos. 3,442,002; 3,492,698; 3,821,087; 3,883,393, 4,184,922; 4,219,426; 4,220,725; 4,226,378; 4,276,687; 4,283,284; 4,329,229; 4,334,993; 4,361,481; 4,374,802; 4,389,363; 4,647,539; 5,015,585; 5,605,835, 5,712,154 and other related patents.
In a single hollow-fiber bioreactor, a bundle of small-diameter porous hollow fibers are contained in a housing that is rigid and sealed. The bundle of fibers is stretched so that the individual fibers run in parallel to each other. The ends of the bundle are sealed at each end so that two compartments are formed: intrafiber that is within the lumens of the fibers and extrafiber that is outside the fibers but still within the housing. In a dual hollow-fiber bioreactor, two separate bundles of small-diameter porous hollow fibers are contained in a common housing so that three compartments are formed and each compartment has its own inlet and outlet ports.
Applications range from the filtration, purification and reclamation of industrial waste products to highly sophisticated biomedical applications in the Health Sciences Field. These include, but are not limited to, the exchange and mass transfer of dissolved gases and aqueous solutions of typical applications such as hemodialysis, plasma separation, extracorporeal gas exchange, process filtration of pharmaceutical solutions, extracorporeal cell-based artificial organs such as bioartificial livers, and the cultivation and expansion of mammalian and plant cells in bioreactors (U.S. Pat. No. 3,883,393 and other related patents).
The teachings of the above prior art have many shortcomings. The principal shortcoming of single hollow-fiber bioreactor is its inability to perform more than one operation at a time. As result, oxygenation of cells medium has to be provided externally. Moreover, in all hollow-fiber bioreactors (single, dual), mass transport across the fiber wall occurs primarily by diffusion, and the nutrient medium is also the production medium. In addition, the fibers may splay apart from one another when the bundle is sealed in the shell, increasing the possibility that cells between the fibers may be anoxic. The principal drawback of a dual circuit hollow-fiber bioreactor by Knazek et al (U.S. Pat. No. 4,184,922) and by Mullon et al. (U.S. Pat. No. 5,712,154) is that their construction does not guarantee uniform distribution of both sets of fibers (e.g., source or nutrient fibers and sink or production fibers). Cells may preferentially grow on or near the source fibers. In addition, if the second set of fibers is used for bleed-off of concentrated product (sink fibers), the nutrient medium must be oxygenated externally. If, in turn, one of the sets of fibers is used for oxygen delivery, then the nutrient medium is also the production medium, as in a single-fiber module.
A dual hollow-fiber cell culture devices with a tube-within-a-tube configuration had been described by Channing R. Robertson and In Ho Kim in 1985, by Linda Custer in 1988 and by James R. Robinson in 1991 (U.S. Pat. No. 5,015,585). In all instances, the intent of an inventor or author was to place a biological component in annular spaces formed between the inner and outer tubes, to use inner tubes for integrated oxygenation and/or to use them as source or nutrient fibers, and to use the space outside the outer fibers as either a sink or a second passage of fluidized nutrients. Though these devices represented a major improvement, they have certain drawbacks, because when used as a cell culture device or a bioartificial organ, the annular space thickness would have to be relatively thin (on the order of 200 microns as stated in the U.S. Pat. No. 5,015,585) to ensure adequate oxygenation and nutrition of cells. A bioreactor with fiber pairs having such a narrow annular space would have to be very large to accommodate sufficient number of cells to provide enough function. In addition, loading of cells would be very difficult. As a consequence of these drawbacks, none of the aforementioned designs resulted in the development of a commercially viable product.
A need therefore exists for a multi-compartment bioreactor, and a method therefor, that allows integration of at least two functions in a single module and, at the same time, loading and maintenance of large number of viable functional cells.
SUMMARY OF THE INVENTION
The invention, which tends to address this need, resides in a bioreactor. The bioreactor described herein provides advantages over known bioreactors in that it integrates in a single module at least two independent operations (e.g., functions, modes of therapy).
According to the present invention, the foregoing advantage is principally provided by the employment of a three-compartment module whereby the cell (animal, human, plant, insect) can be populated and expanded in an outer (shell) compartment (C
1
), while circulating a medium (culture medium, blood or plasma) coaxially within the second mid (e.g., annular) compartment (C
2
) and circulating fluid (e.g., gaseous medium, plasma) within the third inner compartment (C
3
) adjacent to the C
2
compartment. Due to the presence of these three compartments and the proposed method of use thereof, a bioartificial organ (e.g., liver, kidney, pancreas, thyroid, parathyroid, adrenal, etc.) can be constructed, where two different functions (e.g., cell therapy and oxygenation, cell therapy and blood/plasma dialysis or ultrafiltration or diafiltration or any other form of therapy, including regional delivery of pharmacological agents) are integrated in a single module.
In the configuration using hollow fibers, the bioreactor is comprised of a plurality of two hollow fiber bundles, each said hollow fiber bundle interdependent of the other whereby each individual hollow fiber, comprising the plurality of hollow fibers in one bundle, is disposed coaxially inside each hollow fiber of the other hollow fiber bundle. A large number of pairs of hollow fibers are useful such as several hundred pairs.
In accordance with one aspect of this invention, the composite bundle of hollow fibers-within-hollow-fibers is further disposed in a generally rigid, tubular housing having diametrically enlarged double manifolds members adjacent opposite housing ends. Said tubular housing disposes a third compartment enclosing the concentrically arranged fiber-within-a-fiber bundle.
In accordance with another aspect of this invention, relatively resilient plastic sleeve members are carried at each end of each interdependent hollow fiber bundle and the tubular housing; said plastic sleeve members are sealed diametrically opposed to each fiber bundle and the housing member. Preferably, the sleeves are made from a material which sealingly adheres to the each individual hollow fiber and tubular housing to facilitate a hermetic seal of the system. Thus, the three compartments are coaxially disposed yet separate and independent.
In accordance with another aspect of this invention, each of the three compartments has its own inlet and outlet port.
In accordance with another aspect of this invention, the module can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bioreactor with application as blood therapy device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bioreactor with application as blood therapy device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioreactor with application as blood therapy device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3159827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.