Biopsy system

Surgery – Diagnostic testing – Sampling nonliquid body material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06436054

ABSTRACT:

BACKGROUND
1. Technical Field
This disclosure relates to a system and method for the biopsy of tissue specimens and, more particularly, to a single insertion, multiple sample percutaneous biopsy system and method.
2. Background of Related Art
It is often necessary to sample tissue in order to diagnose and treat patients suspected of having cancerous tumors, pre-malignant conditions and other diseases or disorders. Typically, in the case of suspected cancerous tissue, when the physician establishes by means of procedures such as palpation, x-ray or ultrasound imaging that suspicious conditions exist, a biopsy is performed to determine whether the cells are cancerous. Biopsy may be done by an open or percutaneous technique. Open biopsy removes the entire mass (excisional biopsy) or a part of the mass (incisional biopsy). Percutaneous biopsy on the other hand is usually done with a needle-like instrument and may be either a fine needle aspiration (FNA) or a core biopsy. In FNA biopsy, individual cells or clusters of cells are obtained for cytologic examination and may be prepared such as in a Papanicolaou smear. In core biopsy, as the term suggests, a core or fragment tissue is obtained for histologic examination and can be performed via frozen section or paraffin section. In more recent developments, percutaneous techniques have been used to remove the entire mass during the initial procedure.
The type of biopsy utilized depends in large part on the circumstances present with respect to the patient and no single procedure is ideal for all cases. Core biopsy, however, is extremely useful in a number of conditions and is being used more frequently.
Intact tissue from the organ or lesion is preferred by medical personnel in order to arrive at a definitive diagnosis regarding the patient's condition. In most cases, only part of the organ or lesion need be sampled. The portions of tissue extracted must be indicative of the organ or lesion as a whole. In the past, to obtain adequate tissue from organs or lesions within the body, surgery was performed so as to reliably locate, identify and remove the tissue. With present technology, medical imaging equipment such as stereotactic x-ray, fluoroscopy, computer tomography, ultrasound, nuclear medicine and magnetic resonance imaging, may be used. These technologies make it possible to identify small abnormalities even deep within the body. However, definitive tissue characterization still requires obtaining adequate tissue samples to characterize the histology of the organ or lesion.
Mammography can identify non-palpable (not perceptible by touch) breast abnormalities earlier than they can be diagnosed by physical examination. Most non-palpable breast abnormalities are benign but some are malignant. When breast cancer is diagnosed before it becomes palpable, breast cancer mortality can be reduced. It is still difficult to determine if pre-palpable breast abnormalities are malignant, as some benign lesions have mammographic features which mimic malignant lesions and some malignant lesions have mammographic features which mimic benign lesions. Thus, mammography has its limitations. To reach a definitive diagnosis, tissue from within the breast must be removed and examined under a microscope.
The introduction of stereotactic guided percutaneous breast biopsies offered alternatives to open surgical breast biopsy. With time, these guidance systems have become more accurate and easier to use. Biopsy guns were introduced for use in conjunction with these guidance systems.
Biopsy devices used in connection with the above-mentioned guidance systems, particularly those used for diagnostic procedures, suffered from various drawbacks. These devices are manufactured for use with a specific guidance system. Use with other systems requires modifications and adaptations to the biopsy device.
Use of current devices can be limited due to their length. Current designs may be too long or contain configurations for particular mammography tables. Therefore, the above-mentioned devices may not be usable with more than one guidance system without modification or may not be adaptable at all.
In many biopsy procedures, it is necessary to retrieve samples from different orientations at a tissue site. Another disadvantage of current devices is the inability to recall at what position a previous sample was taken. Another drawback suffered by current devices is severing tissue with a knife that is hand driven. This results in inconsistent sample size due to resilient tissue that may be encountered. Further, the firing of a biopsy gun and manipulation of a biopsy device into tissue may cause undesired collateral damage to untargeted tissue and surrounding bodily structures which may result in poor tissue sampling.
Therefore, a continuing need exists for percutaneous biopsy apparatus which can reliably extract adequate biopsy sample(s) with a single insertion of the biopsy instrument and has the versatility to be used in conjunction with various guidance systems used for retrieving tissue samples without the necessity of extensive modifications or adaptations. Preferably, such an apparatus provides an accurate and precise location and retrieval of tissue samples with minimized collateral damage to untargeted tissue and surrounding bodily structures. The apparatus may include the ability to recall sample retrieval position. The apparatus may also include the ability to control the rate for severing a sample. Most preferably, ergonomic enhancements are included for facile manipulation of the apparatus.
SUMMARY
The present disclosure describes systems and methods for the biopsy of tissue specimens, and more particularly, to a single insertion multiple sample percutaneous biopsy system that has the versatility to be used in conjunction with various types and sizes of imaging guidance systems, for example, prone table systems and upright sitting systems, used for retrieving tissue samples without the necessity of modifications or adaptations. The system, preferably, provides an accurate and precise location and retrieval of tissue samples with minimized collateral damage to untargeted tissue and surrounding bodily structures. Most preferably, ergonomic enhancements are included for facile manipulation. The versatility of the system is provided, at least in part, by its novel design and configuration.
The system is used in connection with vacuum assisted biopsy, which can be used for diagnosis. The system allows an operator to extract multiple samples of suspect tissue without withdrawing the active biopsy instrument from a patient to retrieve each separate tissue sample. The disclosed system and methods provide little or no need for stitches and the patient may resume normal activities almost immediately.
In one embodiment, in accordance with the present disclosure, a biopsy system, such as, for example, a biopsy apparatus is provided which includes a carriage housing defining a cavity therewithin. A biopsy instrument, such as, for example, an insertion unit is supported within the cavity of the housing. A firing module engages a wall of the housing and operatively engages the insertion unit for delivering a vacuum tube, defining a fluid passageway therein and a tissue basket, of the insertion unit towards a targeted tissue site. A tissue stripping member is disposed on the vacuum tube. The insertion unit may be disposable and suitable for various types of housings.
A tubular knife member is included within the insertion unit and is rotatably and reciprocatingly coaxially disposed about the vacuum tube. The tubular knife member has a cutting edge for severing tissue. An outer tube is included which is, preferably, made from a radiolucent material and coaxially disposed about the tubular knife member. The outer tube may include a radiopaque marker disposed thereon.
The housing may include a cover for maintaining the insertion unit within the cavity. A cover latch assembly may be provided and mounted to the housing. The housing may include wheel knobs for proper calibratio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biopsy system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biopsy system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biopsy system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2898318

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.