Biomedical response exercise equipment which avoids...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06208889

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to controlled exercise using an apparatus for monitoring a physical condition or body response such as heart rate, and more particularly to controlled exercise equipment in which errors due to interfering sources are minimized or eliminated and in which improved accuracy results due to error detection and correction in the pattern representing the body response.
BACKGROUND ART
For many applications, it is necessary to measure and display a person's body response, such as his or her heartbeat. In particular, in exercise and fitness training, it is often the situation that a person wishes to measure his or her heartbeat in order to achieve the maximum benefits of the exercise without the danger of increasing the heartbeat to a rate where adverse effects could occur. Of course, such measurements are also useful for many health applications such as biofeedback and exercise programs where the participants only mildly exercise and do not approach greatly elevated heart rates. Over the years, various types of equipment have been marketed for the measurement of heart rate, such instruments being popular in a wide variety of applications extending from all forms of exercise to biofeedback. Continuous accurate heart measurement is an important part of all aerobic exercise and rehabilitation programs and for this reason many types of apparatus have been commercially available for personal use by individuals and in fitness clubs, etc. Some of this equipment includes heart rate monitors that are used to control the intensity of the workout based on the user's measured heart rate. As will be discussed later, the problem of providing a good monitor necessarily affects the quality of an exercise program that is response to a measured heart rate.
Some of the most popular heartbeat monitor designs use wireless data transmission from a sensor-transmitter unit to a display unit. This type of design allows optimal and flexible positioning of both units while not limiting a person's freedom of movement. Unfortunately, the increasing popularity of heart measurement, and therefore the use of these heart monitors, has demonstrated the limitations of currently available designs. An example is the recurring interference effects brought about when a person wearing a heart monitor is in close proximity to another person wearing another heart monitor. These people run the risk that their individual monitor readings are influenced by the monitor worn by the other person. Further, it is equally frustrating for a person wearing a heart monitor to find that electromagnetic equipment of all types, such as exercise equipment, power lines etc. will create electromagnetic fields that interfere with the successful transmission of his or her heartbeat, thereby causing an erratic display which is uncorrectable without moving away from the interfering exercise equipment, power lines, etc.
Various types of wireless measuring methods have been proposed. Some of these are based on radio waves while others use a magnetic proximity field. Most of these prior techniques transmit an analog ECG signal of a person. However, as noted, these prior techniques and apparatus are not simultaneously usable by several persons in close proximity to one another or by person who are using such apparatus in close proximity to electrical or electronic equipment. In such cases, the reliability of transmission of heartbeat is significantly reduced with the result that a continuous and accurate monitoring of the heartbeat is no longer possible. As is readily appreciated, this lack of reliability is a problem for anyone using the monitor and is especially disconcerting to a person who is exercising to a level where his or her heartbeat is close to the maximum desired for that person.
Examples of some prior art monitors include U.S. Pat. No. 4,625,733; U.S. Pat. No. 4,425,921; U.S. Pat. No. 3,212,496; and U.S. Pat. No. 3,949,388. The first of these describes a heartbeat monitor using a magnetic proximity field as a basis for analog wireless transmission, where a particular arrangement of magnetic coils is used in the transmitter and the receiver units.
U.S. Pat. No. 4,425,921 describes a portable heartbeat monitor which can be used to check either pulse rate or heart rate using separate sensors for detecting heartbeat and pulse beat. The apparatus shares a common indicator for displaying the heartbeat rate or pulse beat rate depending upon a switch means for connecting either of the sensors to a microcomputer. Analog signals are used in this monitor, which does not use wireless transmission between a transmitter and receiver.
U.S. Pat. No. 3,212,496 describes an apparatus for simultaneously measuring ECG, respiration rate, and respiration volume. A pair of electrodes on or in a person's body have current passed therebetween and sense an impedance change and a heartbeat voltage. A frequency modulated signal can then be telemetered to a receiving and display unit.
U.S. Pat. No. 3,949,388 describes a portable apparatus that can be used for analog biomedical telemetry, and is particularly adapted for use in a hospital where each sensor-transmitter unit is used on a single patient and will not normally be used on another patient. The transmitter is designed to produce a very narrow frequency spectrum where a steady pulse rate accurately represents the measured temperature of the patient. In order to avoid interference from adjacent units, the receiver unit is located within only a few feet of the transmitting unit. Further, a very low power continuously sending transmitting unit is used so that only the closest receiver will detect the analog signal. This avoids the possibility that the receiver will pick up signals from another transmitter. Thus, the selectivity of the receiver is based on its close proximity to the associated transmitter unit, not on any circuitry which would prevent interference by a transmitter broadcasting a high power signal, even though such interfering transmitter may be far away. Further, the frequency range intended for operation is selected to be very narrow. As noted in this patent, frequency sweeping can occur due to saturation of a transistor in the oscillator circuit. In order to prevent this undesirable frequency sweeping, an isolating impedance is used in the circuit design to prevent feedback current of the type which causes the transistor saturation.
U.S. Pat. No. 5,157,604 describes a hospital monitoring system in which many patient transmitter units are coupled to a central station. Wireless transmission of a signal including an identifier and heartbeat data occurs from each patient unit to the central station. Each patient unit transmits on its own frequency so there will be no interference between the patient units. The responses of the patient units are time multiplexed, since these units respond to the central station only in response to the receipt of a timing signal from the central station. Error detection and correction of an incorrect heartbeat due to faulty transmission is not mentioned.
In the prior art monitors for measuring and displaying heartbeat, it is usually not possible to provide a technique and apparatus for determining if the received signal in the display unit is from the properly associated transmitter unit or is instead from another transmitter unit. Further, if there are errors occurring in the data representing the heartbeat, such as missing portions of the signal due to interference from outside sources, the display in these prior monitors will either indicate a wrong value, not indicate heartbeat, or maintain the previous reading without making the user aware of the problem. In these prior art monitors, there is no way to account for transient errors in heartbeat which are momentarily caused but which do not necessarily render inaccurate the later readings of heartbeat. If these prior art monitors are used to control exercise equipment, there is a problem due to interference from the motors in the equipment and also f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biomedical response exercise equipment which avoids... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biomedical response exercise equipment which avoids..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biomedical response exercise equipment which avoids... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2480237

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.