Biomarkers and targets for diagnosis, prognosis and...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S024310, C536S023100, C536S023400, C536S023500, C435S006120

Reexamination Certificate

active

06218529

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates generally to nucleic acid sequences useful as probes for the diagnosis of cancer and methods relating thereto. More particularly, the present invention concerns probes and methods useful in diagnosing, identifying and monitoring the progression of prostate cancer, benign prostatic hyperplasia, bladder cancer or breast cancer through measurements of gene products.
B. Description of the Related Art
Genetic detection of human disease states is a rapidly developing field (Taparowsky et al., 1982; Slamon et al., 1989; Sidransky et al., 1992; Miki et al., 1994; Dong et al., 1995; Morahan et al., 1996; Lifton, 1996; Barinaga, 1996). However, some problems exist with this approach. A number of known genetic lesions merely predispose to development of specific disease states. Individuals carrying the genetic lesion may not develop the disease state, while other individuals may develop the disease state without possessing a particular genetic lesion. In human cancers, genetic defects may potentially occur in a large number of known tumor suppresser genes and proto-oncogenes.
The genetic detection of cancer has a long history. One of the earliest genetic lesions shown to predispose to cancer was transforming point mutations in the ras oncogenes (Taparowsky et al., 1982). Transforming ras point mutations may be detected in the stool of individuals with benign and malignant colorectal tumors (Sidransky et al, 1992). However, only 50% of such tumors contained a ras mutation (Sidransky et al., 1992). Similar results have been obtained with amplification of HER-2
eu in breast and ovarian cancer (Slamon et al., 1989), deletion and mutation of p53 in bladder cancer (Sidransky et al., 1991), deletion of DCC in colorectal cancer (Fearon et al., 1990) and mutation of BRCA1 in breast and ovarian cancer (Miki et al., 1994).
None of these genetic lesions are capable of predicting a majority of individuals with cancer and most require direct sampling of a suspected tumor, making screening difficult.
Further, none of the markers described above are capable of distinguishing between metastatic and non-metastatic forms of cancer. In effective management of cancer patients, identification of those individuals whose tumors have already metastasized or are likely to metastasize is critical. Because metastatic cancer kills 560,000 people in the US each year (ACS home page), identification of markers for metastatic cancer, such as metastatic prostate and breast cancer, would be an important advance.
A particular problem in cancer detection and diagnosis occurs with prostate cancer. Carcinoma of the prostate (PCA) is the most frequently diagnosed cancer among men in the United States (Veltri et al., 1996). Prostate cancer was diagnosed in approximately 210,000 men in 1997 and about 39,000 men succumbed to the malignancy (Parker et al., 1996; Wingo et al., 1997). The American Cancer Society expects that more than 340,000 new cases of prostate cancer will be diagnosed in 1998 (Orozco et al., 1998). Although relatively few prostate tumors progress to clinical significance during the lifetime of the patient, those which are progressive in nature are likely to have metastasized by the time of detection. Survival rates for individuals with metastatic prostate cancer are quite low. Between these extremes are patients with prostate tumors that will metastasize but have not yet done so, for whom surgical prostate removal is curative. Determination of which group a patient falls within is critical in determining optimal treatment and patient survival.
The FDA approval of the serum prostate specific antigen (PSA) test in 1984 has subsequently changed the way prostate disease was managed (Allhoff et al., 1989; Cooner et al., 1990; Jacobson et al., 1995; Orozco et al., 1998). PSA is widely used as a serum biomarker to detect and monitor therapeutic response in prostate cancer patients (Badalament et al., 1996; O'Dowd et al, 1997). Several modifications in PSA assays (Partin and Oesterling, 1994; Babian et al., 1996; Zlotta et al., 1997) have resulted in earlier diagnoses and improved treatment.
While an effective indicator of prostate cancer when serum levels are relatively high, PSA serum levels are more ambiguous indicators of prostate cancer when only modestly elevated, for example when levels are between 2-10 ng/ml. At these modest elevations, serum PSA may have originated from non-cancerous disease states such as BPH (benign prostatic hyperplasia), prostatitis or physical trauma (McCormack et al., 1995). Although application of the lower 2.0 ng/ml cancer detection cutoff concentration of serum PSA has increased the diagnosis of prostate cancer, especially in younger men with non-palpable early stage tumors (Stage Tlc) (Soh et al., 1997; Carter et al., 1997; Harris et al., 1997; Orozco et al., 1998), the specificity of the PSA assay for prostate cancer detection at low serum PSA levels remains a problem.
In current clinical practice, the serum PSA assay and digital rectal exam (DRE) is used to indicate which patients should have a prostate biopsy (Lithrup et al., 1994; Orozco et al., 1998). Histological examination of the biopsied tissue is used to make the diagnosis of prostate cancer. Based upon the American Cancer Society estimate of 340,000 cases of diagnosed prostate cancer in 1998 and a known cancer detection rate of about 35% (Parker et al., 1996), it is estimated that in 1998 over one million prostate biopsies will be performed in the United States (Orozco et al., 1998). Clearly, there would be much benefit derived from a serological test that was sensitive enough to detect small and early stage prostate tumors that also had sufficient specificity to exclude a greater portion of patients with noncancerous or clinically insignificant conditions.
Several investigators have sought to improve upon the specificity of serologic detection of prostate cancer by examining a variety of other biomarkers besides serum PSA concentration (Ralph and Veltri, 1997). One of the most heavily investigated of these other biomarkers is the ratio of free versus total PSA (f/t PSA) in a patient's blood. Most PSA in serum is in a molecular form that is bound to other proteins such as &agr;1-antichymotrypsin (ACT) or &agr;2-macroglobulin (Christensson et al., 1993; Stenman et al., 1991; Lilja et al., 1991). Free PSA is not bound to other proteins. The ratio of free to total PSA (f/tPSA) is usually significantly higher in patients with BPH compared to those with organ confined prostate cancer (Marley et al., 1996; Oesterling et al., 1995; Pettersson et al., 1995). When an appropriate cutoff is determined for the f/tPSA assay, the f/tPSA assay can help distinguish patients with BPH from those with prostate cancer in cases in which serum PSA levels are only modestly elevated (Marley et al., 1996; Partin and Oesterling, 1996). Unfortunately, while f/tPSA may improve on the detection of prostate cancer, information in the f/tPSA ratio is insufficient to improve the sensitivity and specificity of serologic detection of prostate cancer to desirable levels.
Genetic changes reported to be associated with prostate cancer include: allelic loss (Bova, et al., 1993; Macoska et al., 1994; Carter et al., 1990); DNA hypermethylation (Isaacs et al., 1994); point mutations or deletions of the retinoblastoma (Rb) and p53 genes (Bookstein et al., 1990a; Bookstein et al., 1990b; Isaacs et al., 1991); and aneuploidy and aneusomy of chromosomes detected by fluorescence in situ hybridization (FISH) (Macoska et al., 1994; Visakorpi et al., 1994; Takahashi et al., 1994; Alcaraz et al., 1994).
A recent development in this field was the identification of a prostate metastasis suppresser gene, KAI1 (Dong et al., 1995). Insertion of wild-type KAI1 gene into a rat prostate cancer line caused a significant decrease in metastatic tumor formation (Dong et al., 1995). However, detection of KAI1 mutations is dependent upon direct sampling of mutant prostate cells. Thus, either

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biomarkers and targets for diagnosis, prognosis and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biomarkers and targets for diagnosis, prognosis and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biomarkers and targets for diagnosis, prognosis and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2511912

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.