Biologically active support containing bound adsorbent...

Chemistry: molecular biology and microbiology – Carrier-bound or immobilized enzyme or microbial cell;... – Enzyme or microbial cell is immobilized on or in an organic...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S601000, C210S616000, C210S617000, C210S620000, C435S176000, C435S177000, C435S262500, C435S289100

Reexamination Certificate

active

06395522

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to an adsorbent coated biologically active biomass support for use in biological processes for the purification of waste streams, as for example industrial and municipal waste waters and to products, apparatuses and processes for use of such media. More particularly, the present invention relates to such support media which comprises a rigid or semi-rigid substrate that has an adsorbent material, capable of adsorbing pollutants and promoting their subsequent biodegradation by attached and immobilized microorganisms, bonded to the substrate, and to a bioreactor comprising the aforesaid biologically active biomass.
2. Prior Art
One of the hallmarks of contemporary civilization is that each increment of technological progress almost invariably is accompanied by a similar increment of environmental regress. As the pace of technological advances quickens, so does the march of environmental deterioration. The realization of environmental damage has occurred only relatively recently, so that present society sometimes finds itself burdened with the accumulated sins of the not-too-distant past. But another hallmark of current society is its acceptance of the undesirability of environmental degradation coupled with a determination to minimize and even reverse it wherever possible. Although the return of ground waters to their pristine condition of an earlier era is not a realistic goal, there is a genuine determination to make our waters as pure as possible. Environmental agencies have set limits for many common industrial pollutants, and as methods of pollution reduction have become more successful in reducing or removing pollutants from waste water, environmental regulations have become more stringent, resulting in an ever tightening spiral whose goal is to reduce pollutants in waste water to that minimum which is technologically feasible.
Among the methods employed to reduce or remove pollutants, bioremediation constitutes an effective and highly desirable approach. Quite broadly in bioremediation pollutants serve as a food source, generally as a source of carbon and/or nitrogen, for microorganisms. Bacterial metabolism converts the pollutants to metabolites generally with a simple chemical structure, sometimes degrading the pollutants completely to carbon dioxide and water in an aerobic process, or to methane in an anaerobic process. But in any event, the metabolites usually have no adverse environmental effects.
Various bioremediation processes are known. For example, U.S. Pat. No. 4,634,672 describes biologically active compositions for purifying waste water and air which comprises a polyurethane hydrogel containing (i) surface active coal having a specific surface according to BET of above 50 m
2
/g, a polymer having cationic groups and cells which have enzymatic activity and are capable of growth. U.S. Pat. No. 4,681,852 describes a process for biological purification of waste water and/or air by contacting the water or air with the biologically active composition of U.S. Pat. No. 4,634,672. The experimental examples of these patents indicate that the process is not effective for reducing contaminant concentrations in the effluent strain to less than 44 parts per million (ppm). This is not acceptable since the Environmental Protection Agency (EPA) in some instances has mandated that concentration for some contaminants (such as phenol) in effluent waste streams must be as low as 20 parts-per-billion (ppb). (See Environmental Protection Agency 40 CFR Parts 414 and 416. Organic Chemicals and Plastics and Synthetic Fibers Category Effluent Limitations, Guidelines Retreatment Standards, and new Source Performance Standards, Federal Register, Volume 52, No. 214, Thursday, Nov. 5. 1987 Public and Regulations 42522.)
Both U.S. Pat. Nos. 3,904,518 and 4,069,148 describe the addition of activated carbon or Fuller's earth to a suspension of biologically active solids (activated sludge) in waste water as an aid in phenol removal. The adsorbent presumably acts by preventing pollutants toxic to the bacteria from interfering with bacterial metabolic activity. The patentees' approach has matured into the so-called PACT process which has gained commercial acceptance despite its requisites of a long residence time, copious sludge formation with attendant sludge disposal problems, and the need to regenerate and replace spent carbon.
Rehm and coworkers have further refined the use of activated carbon in the aerobic oxidation of phenolic materials by using microorganisms immobilized on granular carbon as a porous biomass support system. Utilizing the propensity of microorganisms to grow on and remain attached to a surface, Rehm used a granular activated carbon support of high surface area (1300 m
2
/g) to which cells were attached within the macropores of the support and on its surface, as a porous biomass support system in a loop reactor for phenol removal. H. M. Ehrhardt and H. J. Rehm, Appl. Microbiol. Biotechnol., 21, 32-6 (1985). The resulting “immobilized” cells exhibited phenol tolerance up to a level in the feed of about 15 g/L, whereas free cells showed a tolerance not more than 1.5 g/L. It was postulated that the activated carbon operated like a “buffer and depot” in protecting the immobilized microorganisms by adsorbing toxic phenol concentrations and setting low quantities of the adsorbed phenol free for gradual biodegradation. This work was somewhat refined using a mixed culture immobilized on activated carbon [A. Morsen and H. J. Rehm, Appl.
Microbiol. Biotechnol., 26, 283-8 (1987)] where the investigators noted that a considerable amount of microorganisms had “grown out” into the aqueous medium, i.e., there was substantial sludge formation in their system.
Suidan and coworkers have done considerable research on the analogous anaerobic degradation of phenol using a packed bed of microorganisms attached to granular carbon [Y. T. Wang, M. T. Suidan and B. E. Rittman, Journal Water Pollut. Control Fed., 58 227-33 (1986)]. For example, using granular activated carbon of 16×20 mesh as a support medium for microorganisms in an expanded bed configuration, and with feed containing from 358-1432 mg phenol/L, effluent phenol levels of about 0.06 mg/L (60 ppb) were obtained at a hydraulic residence time (HRT) of about 24 hours. Somewhat later, a beri-saddle-packed bed and expanded bed granular activated carbon anaerobic reactor in series were used to show a high conversion of COD to methane, virtually all of which occurred in the expanded bed reactor; P. Fox, M. T. Suidan, and J. T. Pfeffer, ibid., 60, 86-92 (1988). The refractory nature of ortho- and meta-cresols toward degradation also was noted.
The impregnation of flexible polymeric foams with activated carbon is known to increase the ability of fabrics and garments to resist the passage of noxious chemicals and gases see for example, U.S. Pat. Nos. 4,045,609 and 4,046,939. However, these patents do not teach the use of these foams in waste water treatment, or that these foams are a superior immobilization support for the growth and activity of microorganisms.
Givens and Sack, 42nd Purdue University Industrial Waste Conference Proceedings, pp. 93-102 (1987), performed an extensive evaluation of a carbon impregnated polyurethane foam as a microbial support system for the aerobic removal of pollutants, including phenol. Porous polyurethane foam internally impregnated with activated carbon and having microorganisms attached externally was used in an activated sludge reactor, analogous to the Captor and Linpor processes which differ only in the absence of foam-entrapped carbon. The process was attended by substantial sludge formation and without any beneficial effect of carbon.
The Captor process itself utilizes porous polyurethane foam pads to provide a large external surface for microbial growth in an aeration tank for biological waste water treatment. The work described above is the Captor process modified by the presence

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biologically active support containing bound adsorbent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biologically active support containing bound adsorbent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biologically active support containing bound adsorbent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2818600

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.