Bioenergetic data collection apparatus

Optics: measuring and testing – Blood analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S042000, C600S556000, C600S336000

Reexamination Certificate

active

06188470

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method and apparatus for the collection of biomedical data. In particular, it relates to a bioenergetic approach to the evaluation of observed cardiovascular response as recorded in terminal tissue, such as the fingertip. The invention finds primary application with humans but may also be applied to animals.
BACKGROUND TO THE INVENTION
Biomedical data can be collected using electronic instruments that utilize electromagnetic energy in various ways. A useful summary of known devices and techniques has been presented by Dr. Dennis W Remmington to the Joint Committee Meeting of the Utah State Medical Association and published in July 1990. He summarises the known devices in two categories: instruments which measure passive electrical energy, and instruments which measure response to stimuli.
The first category includes instruments such as the electrocardiograph (ECG). the electroencephalograph (EEG), Chinese electric pulse testing, and Chinese gastrointestinal analysis.
In the second category are instruments that measure response to stimuli, such as galvanic skin response devices, and instruments that measure response to electromagnetic stimuli, such as electromyelography, brain stem audiometry, magnetic resonance imaging (MRI) and electroacupuncture according to Voll (EAV).
The galvanic skin response technique measures the electrical conductance between two electrodes placed on the skin. The patient is then subjected to various stimuli, and any change in skin conductance is recorded. Any stimuli causing increased sweat production will Increase the conductance and give a change in the readings, which are usually recorded on a graph.
In the EAV method a low voltage electrical charge is Introduced into the body. and the precise level of electric current conducted through the acupuncture points are measured. Information about various organ systems and musculoskeletal regions is obtained by the level of the readings.
The known devices have proven useful to various degrees in providing biomedical data to assist medical practitioners in diagnosis. However, the majority of the known techniques are invasive and require the application of electric current to the patient. Furthermore, the known techniques are subjective in nature and subject to wide variation in interpretation of indicative measures. A method and apparatus for passively collecting bloenergetic data is desirable.
The collection of bioenergefic data, such as pulse rate, by monitoring of blood movement in the fingertip is known. Common devices for performing this function comprise a red or infrared light source and detector. The light incident on the fingertip penetrates a small distance into the fingertip and is modulated by absorption in the blood in the capillaries. A portion of the light is reflected or transmitted and this is measured by the detector. Thus the signal from the detector mimics the flow of blood through the fingertip.
These devices are not limited to use at the fingertip or with humans. Devices for use with animals commonly measure blood movement at the ear lobe, lip or tongue.
The majority of the applications of the device described above are for simple monitoring of pulse rate. In some applications, the signals from the device are analysed in more detail to separately identify the systolic and diastolic pulses.
In recent times the devices have become more sophisticated with the advent of more intense light sources and more sensitive detectors. It is now possible to estimate the partial pressure of oxygen in the body by monitoring absorption of infrared light In the blood and making a number of assumptions. Devices performing this function are generally known as oximeters.
The inventors have found that a great deal more information can be obtained by monitoring blood flow in the fingertip than has previously been realised.
OBJECT OF THE INVENTION
It is an object of the present invention to provide an apparatus for the monitoring and evaluation of observed cardiovascular response.
A further object of the present invention is to provide a method of monitoring and evaluating cardiovascular response.
Further objects will be evident from the following description.
DISCLOSURE OF THE INVENTION
In one form, although it need not be the only or indeed the broadest form, the invention resides in an apparatus for the collection of bioenergetic data comprising:
monitoring means adapted to produce signals characteristic of blood flow;
processing means in signal connection with said monitoring means and adapted to receive and analyse said signals to indicate the bioenergetic status of a body; and
display means adapted to display the bioenergetic status so indicated.
In preference the apparatus further comprises an isolation means in signal connection with the monitor means and processing means. The isolation means preferably provides electrical isolation between the monitoring means and the processing means so as to ensure that the relatively high voltages in the processing means cannot be transmitted to a patient through the monitoring means.
In preference the monitoring means comprises an oximeter adapted to monitor blood flow in an extremity, such as a fingertip or ear lobe. The oximeter preferably comprises a light source, detector means and interface means. The detector is preferably a photodiode. The light source may be a light emitting diode (LED) or diode laser emitting infrared or visible radiation. Preferably, there are two light sources, one emitting infrared radiation and one emitting visible radiation. The signals from the detector are indicative of the nature of the blood flow in the extremity. The interface means performs preliminary processing of the signals from the detector including converting the analogue detector signals to digital signals suitable for the processing means.
In preference the processing means is a microprocessor programmed to measure characteristics of the received signals. The measured characteristics Include such characteristics as:
the ratio of heart activity to heart rest
the variation in systolic pulse amplitude over time
the ratio of systolic pulse amplitude to diastolic amplitude
variation in shape from pulse to pulse
variation in pulse shape over time.
In preference the bioenergetic status of the body is indicated according to such functions as:
pulse rate
oxygen saturation in terminal tissue (SpO
2
)
blood flow rate
elasticity of blood vessels
strength and regularity of the heart beat
cardiac sufficiency
cardiac valve activity
cardiac or vascular metabolic abnormalities
cell energy change
latent hypertension
myocardium damage
cardiac or vascular inflammation
allergic reactions
immune system response changes
pulmonary/cardiac function variations
bioenergetic reactions at lining of intestine
The display means is suitably a high resolution video display adapted to display graphical and alphanumeric data. The graphical data preferably includes a representation of the measured pulse shape or a series of measured pulses. The alphanumeric data preferably includes indications of one or more of the above characteristics or functions.
In preference, the apparatus further comprises memory means in signal connection with the processing means. The memory means may provide transient storage of data, permanent storage of data or both.
The apparatus may further comprise an EKG module to provide an electrical readout of the heart function for an objective profile of the cardiac function, an allergy module for providing an objective computer based evaluation and assessment of electrodermal readings of known allergens by registering before and after microvoltage changes in response to allergens, and a pulse blood pressure module for providing diastolic, systolic and mean arterial pressure.
In a further form the invention resides in a method of collecting bioenergetic data of a body including the steps of:
transmitting visible and infrared radiation into terminal tissue;
measuring a voltage signal proportional to visible and infrared radiation

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bioenergetic data collection apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bioenergetic data collection apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioenergetic data collection apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2586717

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.