Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...
Reexamination Certificate
2001-02-15
2002-03-26
Nutter, Nathan M. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Processes of preparing a desired or intentional composition...
C524S014000, C524S015000, C524S016000, C524S027000, C524S035000, C524S037000, C524S038000, C524S047000, C524S048000, C524S050000, C524S051000, C524S054000, C524S055000
Reexamination Certificate
active
06362256
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to polymer compositions and, more particularly, to biodegradable polymer compositions, methods for making same and articles therefrom.
2. Description of the Related Art
Starches and modified starches have been the focus of considerable research interest in attempts to use these as fillers in order to decrease polymer costs and to use polymers that are biodegradable. Several recent examples, U.S. Pat. No. 5,384,187, issued Jan. 24, 1995, to inventors Uemura et al., U.S. Pat. No. 5,391,423, issued Feb. 21, 1995, to inventors Wnuk et al., and U.S. Pat. No. 5,412,005, issued May 2, 1995, to inventors Bastioli et al., all represent domestic and foreign based attempts to achieve biodegradable polymer compositions in which natural polymers such as starches have been added to hydroxy-functional polymers.
Recent biodegradable polymer compositions have included a starch or a modified starch and a hydroxy-functional polymer. An example of such a biodegradable polymer composition is disclosed in U.S. Pat. No. 5,852,078, issued Dec. 22, 1998, to inventors Willett et al. This biodegradable polymer composition includes the use of granular starch and thermoplastic poly(hydroxy ester ethers) (PHEE) made with various difunctional acids such as adipic acid. However, uses of this composition may be extremely limited due to the low glass transition temperature of the PHEE made with adipic acid. Most articles formed from this composition easily softened and lost their shape at high temperatures of up to and more than 100° C.
Further, it is known to mix starch with a thermoplastic polyester such as poly(lactic acid) (PLA). It is also known that such a mixture is immiscible and any resultant article formed is brittle with poor material properties. Therefore, there is a need in the art to provide polymer compositions with hydroxy-functional polymers and thermoplastic polyesters that are useful in the manufacture of biodegradable plastics, but which are easily prepared and processed into articles that keep their shape at high temperatures.
SUMMARY OF THE INVENTION
Accordingly, the present invention is a polymer composition. The polymer composition includes a first component being a hydroxy-functional polymer of poly(hydroxy ester ether) (PHEE), a second component being a natural polymer and a third component being a thermoplastic polyester. The first component, second component and third component are compounded to form the polymer composition.
Also, the present invention is an article. The article includes a first component being a hydroxy-functional polymer of poly(hydroxy ester ether) (PHEE), a second component being a natural polymer and a third component being a thermoplastic polyester. The first component, second component and third component are compounded to form a polymer composition which is processed into the article.
Further, the present invention is a method of making a polymer composition. The method includes the steps of providing a first component being a hydroxy-functional polymer of poly(hydroxy ester ether) (PHEE), providing a second component being a natural polymer and providing a third component being a thermoplastic polyester. The method includes the steps of compounding the components to form a polymer composition.
The polymer compositions of the present invention are biodegradable and useful in various processes such as molding, extruding and casting to form molded articles and extruded sheets. The hydroxy-functional polymer may be as described by U.S. Pat. No. 5,171,820, issued Dec. 15, 1992, to inventors Mang et al., U.S. Pat. No. 5,496,910, issued Mar. 5, 1996, to inventors Mang et al., and PCT application published as International Publication No. WO 97/23564, on Jul. 3, 1997, to inventors Mang et al. Natural polymers for mixture with the hydroxy-functional polymers include polysaccharides, modified polysaccharides, naturally-occurring fibers, and particulate fillers. Particularly preferred as the natural polymer are starches. The thermoplastic polyesters for mixture with the natural polymers and hydroxy-functional polymers include poly(lactic acid) (PLA), bionolle, cellulose acetate, polycaprolactone and polyhydroxy(butyrate-co-valerate) (PHBV).
One advantage of the present invention is that new polymer compositions are provided which are useful in the manufacture of biodegradable plastics. Another advantage of the present invention is that a method is provided of making such polymer compositions. Yet another advantage of the present invention is that articles are easily prepared from such polymer compositions that keep their shape at high temperatures of up to and more than 100° C. Still another advantage of the present invention is that the polymer compositions contain starch and a hydroxy-functional polymer such as poly(hycroxy ester ether) (PHEE) and a thermoplastic polyester such as poly(lactic acid) (PLA). A further another advantage of the present invention is that the method compounds the composition in at least one compounding step. Yet a further advantage of the present invention is that the compounded composition is pelletized for further processing in various processes such as injection molding. Still a further advantage of the present invention is that the polymer compositions are biodegradable and allow molded items to be formed such as planter pots, disposable razors, cutlery, pen casings, etc., with little concern of softening at high temperatures of up to and more than 100° C.
Other features and advantages of the present invention will be readily appreciated as the same becomes better understood after reading the subsequent description, examples and the appended claims.
DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
Broadly, the present invention is a polymer composition comprising three main components: the first component is a hydroxy-functional polymer, more particularly, a hydroxy-functional polyester having a repeating structure as will hereinafter be described. The hydroxy-functional polymer may be, for example, a thermoplastic poly(hydroxy ester ether) (PHEE). The second component is a natural polymer. The natural polymer may be, for example, a polysaccharide, a modified polysaccharide, or a naturally occurring fiber or particulate filler, but preferably is starch or a modified starch. The third component is a thermoplastic polyester. The thermoplastic polyester may be, for example, a thermoplastic poly(lactic acid) (PLA).
While the amount of the hydroxy-functional polymer selected for use depends on a variety of factors, including the specific polymer employed and the desired end uses of the composition, in general hydroxy-functional polymers can be present in an amount of from 1 to 99 wt. %, preferably from 1 to 95 wt. %, and most preferably from 10 to 90 wt. %, based on the total weight of the composition. Preferably, the thermoplastic polyester is a poly(lactic acid) (PLA), present in amounts of about equal to or greater than the amount of the hydroxy-functional polymer used in the formulation of the composition.
Natural polymers contemplated for use include biodegradable organic fillers, such as cellulose and other fibers and the like, which are well known. Naturally occurring fibers or particulate fillers which can be employed in the practice of the present invention for preparing the composition are, for example, wood flour, wood pulp, wood fibers, cotton, flax, hemp, or ramie fibers, rice or wheat straw, chitin, chitosan, cellulose materials derived from agricultural products, nut shell flour, corn cob flour, and mixtures thereof. Polysaccharides which can be employed in the practice of the present invention for preparing the composition are the different starches, celluloses, hemicelluloses, gums, pectins, and pullulans. Polysaccharides are known and are described, for example, in
Encyclopedia of Polymer Science and Technology
, 2nd edition, 1987.
Modified polysaccharides which can be employed in the practice of the present invention for preparing th
Doane William M.
Willett Julious L.
Bliss McGlynn & Nolan, P.C.
Nutter Nathan M.
The United States of America as represented by the Secretary of
LandOfFree
Biodegradable polymer compositions, methods for making same... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Biodegradable polymer compositions, methods for making same..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biodegradable polymer compositions, methods for making same... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2864442