Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Organic -co- compound
Reexamination Certificate
2002-06-12
2003-09-16
Howard, Jacqueline V. (Department: 1764)
Solid anti-friction devices, materials therefor, lubricant or se
Lubricants or separants for moving solid surfaces and...
Organic -co- compound
C508S279000
Reexamination Certificate
active
06620772
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention pertains to the art of penetrating lubricants, and more specifically to the art of biodegradable penetrating lubricants.
2. Description of the Related Art
A demand exists for liquid compositions that have the ability to penetrate rapidly between metallic surfaces that are in close contact, such as the leaves of springs, hinges, bolts, car door locks, house locks, padlocks, pipe fittings, and the like, and to loosen the adjacent metallic surfaces that have rusted, “frozen”, or otherwise become bound together. In the usual situation, a layer or film of rust between the surfaces is so tenacious that it often binds the adjacent metal surfaces so tightly that it is difficult, if not impossible, to loosen the surfaces by the use of mechanical loosening devices, such as wrenches.
A number of oil compositions are offered commercially which have been used for the purpose of lubricating such difficult to loosen surfaces, and such compositions are generally known as penetrating lubricants. These lubricants are generally characterized by having a high degree of penetration, which means that the surface tension and the viscosity of the lubricant is somewhat lower than that of an ordinary lubricant used on rotating parts.
Typically, the penetrating lubricants are comprised of petroleum based oils. The petroleum based oils have functioned satisfactorily, but they have several disadvantages. The petroleum based oils are only minimally biodegradable and, thus, they pose safety and contamination concerns. Further, the petroleum based oils are non-renewable.
In contrast, vegetable oils are obtainable in large volumes from renewable resources and in general are characterized as readily biodegradable or “environmentally friendly.” As a result, such oils are potentially attractive for use in a wide variety of applications, including use as a penetrating lubricant.
Use of vegetable oils as penetrating lubricants has not been thoroughly explored. Many vegetable oils do not possess the desired spectrum of characteristics relating to: pour point; oxidative stability; and compatibility with additives, among others. Vegetable oils do however possess many desirable properties for use as a penetrating lubricant. In particular, vegetable oils typically provide good lubrication, good viscosity, and high flash point. In addition, vegetable oils are generally nontoxic and readily biodegradable. For example, under standard test conditions (e.g., OCED 301D test method), a typical vegetable oil can biodegrade up to 80% into carbon dioxide and water in 28 days, as compared to 25% or less for typical petroleum-based lubricating fluids.
SUMMARY OF THE INVENTION
In accordance with the present invention, a new and improved biodegradable penetrating lubricant is provided.
It is an object of this invention to provide a biodegradable penetrating lubricant, which overcomes or otherwise mitigates the problems of the prior art in this area.
It is a further object of this invention to provide a biodegradable penetrating lubricant, which is characterized by its excellent penetrating action while still providing the necessary lubricating characteristics to achieve all the advantages required by a penetrating lubricant.
It is still further an object of this invention to provide a biodegradable penetrating lubricant, which is characterized by excellent corrosion inhibiting properties.
It is still a further object of this invention to provide a biodegradable penetrating lubricant that penetrates into close tolerant areas, then lubricates and prevents corrosion.
It is still a further object of this invention to provide a biodegradable penetrating lubricant that protects deep into the core of a cable or chain link, and is excellent as a light air tool lubricant, and preservative for oil parts.
It is still a further object of this invention to provide a biodegradable penetrating lubricant that has exceptional benefits over petroleum oils in the aforementioned applications because there is a direct loss of the lubricant into the water, soil or work environment.
Still other benefits and advantages of the invention will become apparent to those skilled in the art to which it pertains upon a reading and understanding of the following detailed specification.
To accomplish these objectives, the present invention provides for a biodegradable penetrating lubricant comprised of:
(A) at least one triglyceride oil of the formula:
wherein R
1
, R
2
, and R
3
are aliphatic hydrocarbyl groups containing from about 7 to about 23 carbon atoms, which includes but is not limited to 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23 carbon atoms;
(B) an organic solvent selected from the group comprising:
(1) ethyl lactate,
(2) at least one mineral spirit, and
(3) combinations of 1 and 2; and,
(C) an antioxidant
Optionally, the lubricant may further include an additive selected from the group comprising:
(D) an antiwear inhibitor;
(E) a corrosion inhibitor;
(F) a pour point depressant; and,
(G) soy methyl ester.
(A) The Triglyceride Oil
In practicing this invention, the base oil is a synthetic triglyceride or a natural oil of the formula
wherein R
1
, R
2
, and R
3
are aliphatic hydrocarbyl groups that contain from about 7 to about 23 carbon atoms. The term “hydrocarbyl group” as used herein denotes a radical having a carbon atom directly attached to the remainder of the molecule. The aliphatic hydrocarbyl groups include the following:
(1) Aliphatic hydrocarbon groups: alkyl groups such as heptyl, nonyl, undecyl, tridecyl, heptadecyl; alkenyl groups containing a single double bond such as heptenyl, nonenyl, undecenyl, tridecenyl, heptadecenyl, heneicosenyl; alkenyl groups containing 2 or 3 double bonds such as 8,11-heptadecadienyl and 8,11,14-heptadecatrienyl. All isomers of these are included, but straight chain groups are preferred.
(2) Substituted aliphatic hydrocarbon groups: groups containing non-hydrocarbon substituents which, in the context of this invention, do not alter the predominantly hydrocarbon character of the group. Those skilled in the art will be aware of suitable substituents. Examples are hydroxy, carbalkoxy, (especially lower carbalkoxy) and alkoxy (especially lower alkoxy), the term, “lower” denoting groups containing not more than 7 carbon atoms.
(3) Hetero groups: groups which, while having predominantly aliphatic hydrocarbon character within the context of this invention, contain atoms other than carbon present in a chain or ring otherwise composed of aliphatic carbon atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for example, oxygen, nitrogen, and sulfur.
The triglyceride oils suitable for use in this invention are vegetable oils and modified vegetable oils. The vegetable oil triglycerides are naturally occurring oils. By “naturally occurring” it is meant that the seeds from which the oils are obtained have not been subjected to any genetic altering. Further, by “naturally occurring” it is meant that the oils obtained are not subjected to hydrogenation or any chemical treatment that alters the di- and tri-unsaturation character. The naturally occurring vegetable oils having utility in this invention comprise at least one of soybean oil, rapeseed oil, sunflower oil, coconut oil, lesquerella oil, canola oil, peanut oil, corn oil, cottonseed oil, palm oil, safflower oil, meadowfoam oil, or castor oil.
The triglyceride oils may also be modified vegetable oils. Triglyceride oils are modified either chemically or genetically. Hydrogenation of naturally occurring triglycerides is the primary means of chemical modification. Naturally occurring triglyceride oils have varying fatty acid profiles. The fatty acid profile for naturally occurring sunflower oil is
palmitic acid
70
percent
stearic acid
4.5
percent
oleic acid
18.7
percent
linoleic acid
67.5
percent
linolenic acid
0.8
percent
other acids
1.5
percent
By chemically modifying sunflower oil by hydrogenation, it is meant that hydrogen is permitted to react w
Emerson Roger D.
Howard Jacqueline V.
McDowell Brouse
Renewable Lubricants, Inc.
Thomson Daniel A.
LandOfFree
Biodegradable penetrating lubricant does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Biodegradable penetrating lubricant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biodegradable penetrating lubricant will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3009543