Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert
Patent
1997-10-03
1999-12-21
Azpuru, Carlos
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Implant or insert
424428, 424430, 424434, 424435, 424436, 424437, 424443, 424449, 424451, 424464, A61F 202, A61F 214, A61F 606, A61K 948
Patent
active
060045736
ABSTRACT:
A water soluble biodegradable ABA-type block copolymer made up of a major amount of hydrophobic poly(lactide-co-glycolide) copolymer A-blocks and a minor amount of a hydrophilic polyethylene glycol polymer B-block, having an overall average molecular weight of between about 3100 and 4500, possesses reverse thermal gelation properties. Effective concentrations of the block copolymer and a drug may be uniformly contained in an aqueous phase to form a drug delivery composition. At temperatures below the gelation temperature of the copolymer the composition is a liquid and at temperatures at or above the gelation temperature the composition is a gel or semi-solid. The gelation temperature is preferably at or below body temperature of a warm-blooded animal. The composition may be administered to a warm-blooded animal as a liquid by parenteral, ocular, topical, transdermal, vaginal, transurethral, rectal, nasal, oral, or aural delivery means and is a gel at body temperature. The composition may also be administered as a gel. The drug is released at a controlled rate from the gel which biodegrades into non-toxic products. The release rate of the drug may be adjusted by changing various parameters such as hydrophobic/hydrophilic component content, copolymer concentration, molecular weight and polydispersity of the block copolymer. Because the copolymer is amphiphilic it functions to increase the solubility and/or stability of drugs in the composition.
REFERENCES:
patent: 4438253 (1984-03-01), Casey et al.
patent: 4526938 (1985-07-01), Churchill et al.
patent: 4652441 (1987-03-01), Okada et al.
patent: 4745160 (1988-05-01), Churchill et al.
patent: 4938763 (1990-07-01), Dunn et al.
patent: 5100669 (1992-03-01), Hyon et al.
patent: 5278202 (1994-01-01), Dunn et al.
patent: 5324519 (1994-06-01), Dunn et al.
patent: 5330768 (1994-07-01), Park et al.
AS Sawhney and JA Hubbell, Rapidly Degraded Terpolymers of dl-Lactide, Glycolide, and .epsilon.-Caprolactone with Increased Hydrophilicty by Copolymerization with Polyethers, J. Biomed. Mat. Res., 24, 1397-1411(1990).
AS Sawhney, CP Pathak, and JA Hubbell, Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-c9-poly(.alpha.-hydroxy acid) Diacrylate Macrometers, Macromolecules, 26(4), 581-589: 1993.
T Matsuda, N Motomura, and T Oka, Angiopeptin as a Potent Inhibitor of Myointimal Hyperplasia: Systemic Injection and Local Administration via Impregnation in a Biodegradable Polymeric Gel, ASAIO Journal, M512-M517(1993).
L Martini et al., Micellisation and Gelation of Triblock Copolymer of Ethylene Oxide and .epsilon.-Caprolactone, CL.sub.n E.sub.m CL.sub.n, in Aqueous Solution, J. Chem. Soc. Faraday Trans., 90(13), 1961-1966: 1994.
TP Johnston and SC Miller, Inulin Diposition Following Intramuscular Administration of an Inulin/Poloxamer Gel Matrix, J. Parenteral Science & Technology, 43(6), Nov.-Dec. 1989.
TP Johnston et al., Sustained Delivery of Interleukin-2 from a Poloxamer 407 Gel Matrix Following Intraperitoneal Injection in Mice, Pharmaceutical Research 9(3), 1992.
K Morikawa et al., Enhancement of Therapeutic Effects of Recombinant Interleukin 2 on a Transplantable Rat Fibrosarcoma by the Use of a Sustained Release Vehicle, Pluronic Gel, Cancer Research, 47, pp. 37-41, Jan. 1, 1987.
TP Johnston and SC Miller, Toxicological Evaluation of Poloxamer Vehicles for Intramuscular Use, J. Parenteral Science and Technology, 39(2), Mar.-Apr. 1985.
L. Youxin, C Volland, and T Kissel, In-Vitro Degradation and Bovine Serum Albumin Release of the ABA Triblock Copolymers Consisting of poly (L(+)lactic acid), or poly (L(+)lactic acid-co-glycolic acid) A-Blocks attached to Central Polyoxyethylene B-Blocks, J. Controlled Release, 32: 1994.
L Youxin and T Kissel, Synthesis and Properties of Biodegradable ABA Triblock Copolymers Consisting of poly (L-lactic acid) or poly (L-lactic-co-glycolic acid) A-Blocks attached to Central Poly(oxyethylene) B-Blocks, J. Controlled Release, 27: 1993.
KA Fults and TP Johnston, Sustained-Release of Urease from a Poloxamer Gel Matrix, J. Parenteral Science & Technology, 44(2), Mar.-Apr. 1990.
Rathi Ramesh C.
Zentner Gaylen M.
Azpuru Carlos
Macromed, Inc.
LandOfFree
Biodegradable low molecular weight triblock poly(lactide-co-glyc does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Biodegradable low molecular weight triblock poly(lactide-co-glyc, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biodegradable low molecular weight triblock poly(lactide-co-glyc will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-502339