Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Patent
1998-10-01
2000-09-12
Truong, Duc
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
528354, 424425, 424426, 424486, 424501, C08G 6391, C08L 6700
Patent
active
061179493
ABSTRACT:
A water soluble biodegradable ABA- or BAB-type triblock polymer is disclosed that is made up of a major amount of a hydrophobic polymer made of a poly(lactide-co-glycolide) copolymer or poly(lactide) polymer as the A-blocks and a minor amount of a hydrophilic polyethylene glycol polymer B-block, having an overall weight average molecular weight of between about 2000 and 4990, and that possesses reverse thermal gelation properties. Effective concentrations of the triblock polymer and a drug may be uniformly contained in an aqueous phase to form a drug delivery composition. At temperatures below the gelation temperature of the triblock polymer the composition is a liquid and at temperatures at or above the gelation temperature the composition is a gel or semi-solid. The composition may be administered to a warm-blooded animal as a liquid by parenteral, ocular, topical, inhalation, transdermal, vaginal, transurethral, rectal, nasal, oral, pulmonary or aural delivery means and is a gel at body temperature. The composition may also be administered as a gel. The drug is released at a controlled rate from the gel which biodegrades into non-toxic products. The release rate of the drug may be adjusted by changing various parameters such as hydrophobic/hydrophilic componenet content, polymer concentration, molecular weight and polydispersity of the triblock polymer. Because the triblock polymer is amphiphilic, it functions to increase the solubility and/or stability of drugs in the composition.
REFERENCES:
patent: 4438253 (1984-03-01), Casey et al.
patent: 4526938 (1985-07-01), Churchill et al.
patent: 4652441 (1987-03-01), Okada et al.
patent: 4745160 (1988-05-01), Churchill et al.
patent: 4938763 (1990-07-01), Dunn et al.
patent: 5100669 (1992-03-01), Hyon et al.
patent: 5278202 (1994-01-01), Dunn et al.
patent: 5324519 (1994-06-01), Dunn et al.
patent: 5330768 (1994-07-01), Park et al.
patent: 5702717 (1997-12-01), Cha et al.
K.A. Fults and T.P. Johnston, "Sustained-Release of Urease from a Poloxamer Gel Matrix," J. Parenteral Science & Technology, 44(2), 1990: 58-65.
T.P. Johnston and S.C. Miller, "Toxicological Evaluation of Poloxamer Vehicles for Intramuscular Use," J. Parenteral Science & Technology, 39(2), 1985: 83-88.
T.P. Johnston and S.C. Miller, "Insulin Disposition Following Intramuscular Administration of an Insulin/Polooxamer Gel Matrix," J. Parenteral Science & Technology, 43(6), 1989: 279-286.
T.P. Johnston et al., "Sustained Delivery of Interleukin-2 from a Poloxamer 407 Gel Matrix Following Intraperitoneal Injection in Mice," Pharmaceutical Research, 9(3), 1992: 425-434.
L. Martini et al., "Micellisation and Gelation of Triblock Copolymer of Ethylene Oxide and .epsilon.-Caprolactone, C1.sub.n E.sub.m CL.sub.n, in Aqueous Solution," J. Chem. Soc. Faraday Trans., 90(13), 1994: 1961-1966.
T. Matsuda et al., "Angiopeptin as a Potent Inhibitor of Myointimal Hyperplasia: Systemic Injection and Local Administration via Impregnation in a Biodegradable Polymeric Gel," ASAIO Journal, 1993: M512-M517.
K. Morikawa et al., "Enhancement of Therapeutic Effects of Recombinant Interelukin 2 on Transplantable Rat Fibrosarcoma by the Use of a Sustained Release Vehicle, Pluronic Gel," Cancer Research, 47, 1987: 37-41.
A.S. Sawhney and J.A. Hubbell, "Rapidly Degraded Terpolymers of dl-lactide, glycolide, and .epsilon.-caprolactone with increased hydrophilicty by copolymerization with polyether," J. Biomedical Mat. Res., 24, 1990: 1397-1441.
A.S. Sawhney et al., "Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(.alpha.hydroxy acid) Diacrylate Macromers," Macromolecules, 26, 1993: 581-537.
L. Youxin and T. Kissell, "Synthesis and Properties of Biodegradable ABA Triblock Copolymers Consisting of poly(L-lactic acid) or poly(L-lactic-co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-blocks," J. Controlled Release, 27, 1993: 247-257.
L. Youxin et al., "In-vitro Degradation and Bovine Serum Albumin Release of the ABA Triblock Copolymers Consisting of poly (L(+) lactic acid), or poly (L(+) lactic acid-co-glycolic acid) A-blocks Attached to Central Polyoxyethylene B-Blocks," J. Controlled Release, 32, 1994: 121-128.
Jeong Byeongmoon
Rathi Ramesh C.
Zentner Gaylen M.
Macromed, Inc.
Truong Duc
LandOfFree
Biodegradable low molecular weight triblock poly (lactide-co-gly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Biodegradable low molecular weight triblock poly (lactide-co-gly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biodegradable low molecular weight triblock poly (lactide-co-gly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-97014