Biodegradable high oxidative stability oils

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C554S002000

Reexamination Certificate

active

06281375

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to oils having a 1,3-dierucoyl 2-oleoyl glycerol (EOE) content of at least about 50%, based on total triacylglycerol composition, and use of such oils in industrial applications.
Oils used in industrial applications are typically petroleum based hydrocarbons that can damage the environment as well as pose health risks to people using them. Plant oils are an environmentally friendly alternative to petroleum based products and are based on a renewable natural resource. The major components of plant oils are triacylglycerols, which are three fatty acid chains esterified to a glycerol molecule. The polar glycerol regions and non-polar hydrocarbon regions align at the boundaries of the metal surfaces, and thus have better lubricant properties than petroleum hydrocarbons.
Two main properties of plant oils hinder their use for industrial applications. Most plant oils do not possess both of these characteristics. First, the oils must be liquid and have a reasonable viscosity at low temperatures. For example, high erucic purified rapeseed oil has a pour point of −16° C., but undergoes a significant increase in viscosity with decreasing temperatures.
Second, the oils must have high oxidative stability. In general, oxidative stability is related to the degree of unsaturation present in the fatty acids. Reaction with oxygen can lead to polymerization and cross-linking of the fatty acids and an increased viscosity. Saturated hydrocarbon based oils have no unsaturation and therefore have high oxidative stability.
SUMMARY OF THE INVENTION
The invention is based on oils having a high EOE content and uses for such oils in industrial applications. The oils can be synthetic or can be produced by plants.
In one aspect, the invention features a triacylglycerol containing oil having a 1,3-dierucoyl 2-oleoyl glycerol content of at least about 50% based on total triacylglycerol composition. In particular embodiments, the oil has a 1,3-dierucoyl 2-oleoyl glycerol content of from about 60% to about 90% or from about 75% to about 90%. Oils of the invention have an oxidative stability of from about 80 AOM hours to about 300 AOM hours in the absence of added antioxidants. In particular, the oxidative stability is from about 84 AOM hours to about 120 AOM hours in the absence of added antioxidants. The viscosity index of such oils is greater than about 195.
In another aspect, the invention features a plant having a seed-specific reduction in delta-12 desaturase activity in comparison with a corresponding wild-type plant. Suitable plants are from species that naturally produce erucic acid. Such modified plants produce seeds yielding an oil comprising from about 50% to about 70% erucic acid and from about 25% to about 35% oleic acid. In certain embodiments, the plants further have a seed-specific reduction in palmitoyl ACP thioesterase activity and a seed-specific increase in delta-9 desaturase activity in comparison with corresponding wild-type plants. The plants also can have a seed-specific reduction in delta-15 desaturase activity in comparison with corresponding wild-type plants.
The invention also features a transgenic plant of a species that naturally produces erucic acid, wherein the transgenic plant has at least one nucleic acid construct. The nucleic acid construct includes a regulatory sequence operably linked to afad2 coding sequence. The transgenic plant exhibits a seed-specific reduction in delta-12 desaturase activity in comparison with a corresponding non-transgenic plant, and produces seeds yielding an oil comprising from about 50% to about 70% erucic acid and from about 25% to about 35% oleic acid, based on total fatty acid composition. Progeny of such transgenic plants produce seeds yielding an oil having the erucic acid content and the oleic acid content of the parent.
Transgenic plants of the invention further can have at least one construct having a regulatory sequence operably linked to a palnitoyl ACP thioesterase coding sequence and a regulatory sequence operably linked to a delta-9 desaturase coding sequence. Such plants exhibit a seed-specific increase in delta-9 desaturase activity and a seed-specific reduction in palmitoyl ACP thioesterase activity in comparison with corresponding non-transgenic plants. In some embodiments, the transgenic plant also contains at least one construct having a regulatory sequence operably linked to a fad3 coding sequence, and exhibits a seed-specific reduction in delta-15 desaturase activity in comparison with a corresponding non-transgenic plant.
The invention also features a method of producing an endogenous vegetable oil. The method includes crushing seeds of plants of the invention, and extracting oil therefrom.
In another aspect, an endogenous oil having an erucic acid content of from about 50% to about 70% and an oleic acid content of from about 25% to about 35%, based on total fatty acid composition is described. Triacylglycerols of such oils contain about 75% or greater 1,3-dierucoyl 2-oleoyl glycerol. In particular embodiments, the triacylglycerols of the oil contain about 75% to about 90% 1,3-dierucoyl 2-oleoyl glycerol.
The invention also features a high oxidative stability composition including a vegetable oil and an amount of 1,3-dierucoyl 2-oleoyl glycerol effective to increase oxidative stability of the vegetable oil.
The invention also features a hydraulic oil composition including an oil having a 1,3-dierucoyl 2-oleoyl glycerol content of at least 50% based on total triacylglycerol composition and an additive. The additive can be, for example, an antioxidant, anti-rust additive, anti-wear additive, pour point depressant, viscosity-index improver, anti-foam additive or a combination thereof and is present in an amount from about 0.01% to about 20% based on the weight of the composition.
A lubrication additive including a triacylglycerol containing oil having a 1.3 dierucoyl 2-oleoyl glycerol content of at least about 50% based on total triacylglycerol composition is also described. The additive is effective for reducing friction when present in lubrication fluid in amounts from about 2% to about 20% by weight in the lubrication fluid.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
DETAILED DESCRIPTION
Oils having a specific triacylglycerol composition are featured in the invention. In particular, triacylglycerol containing oils having an erucic acid moiety at the sn-1 and sn-3 positions and an oleic acid moiety at the sn-2 position of glycerol (1,3-dierucoyl 2-oleoyl glycerol, EOE) are featured.
In one aspect, the invention features a triacylglycerol containing oil including an EOE content of about 50% or greater based on the total triacylglycerol (TAG) composition of the oil. As used herein, a “triacylglycerol containing oil” refers to synthetic or natural oils composed primarily of triacylglycerols. In particular embodiments, the triacylglycerol containing oil can include an EOE content of about 60% to about 90% and is preferably from about 75% to about 90%. The proportions of TAGs in an oil of the invention that are EOE can be readily determined according to AOCS Official Method Ce 5B-89. Individual TAGs are identified by comparison with external or internal standards and can be quantified using a non-linear quadratic fit curve.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biodegradable high oxidative stability oils does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biodegradable high oxidative stability oils, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biodegradable high oxidative stability oils will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2437086

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.