Biodegradable delivery systems of biologically active...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S423000, C424S422000, C424S400000, C604S890100

Reexamination Certificate

active

06193991

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to biodegradable delivery systems incorporating a biologically active substance (BAS). The present invention also provides methods for preparing these biodegradable delivery systems. The consistency and rheology, in vivo degradation rates of the biodegradable delivery systems, and release characteristics of the BAS from the biodegradable delivery system is controlled by modulating the type and concentration of plasticizers, and type and molecular weight of polymers and copolymers.
BACKGROUND OF THE INVENTION
The term biodegradable polymers refers to those polymers which are slowly converted to nontoxic degradation products in the body. Examples of biodegradable polymers include polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate, polyhydroxyvalerate, poly(alkylcyanoacrylate), polyanhydrides, polyorthoesters, poly(aminoacids), pseudopolyamino acids, polyphosphazenes. Some of these polymers and their copolymers have been studied extensively for biomedical applications such as sutures, staples and mesh for wound closure, fracture fixation, bone augmentation and ligament reconstruction in orthopedics, ligation clips and vascular grafts in cardiovascular surgery, and dental repairs (Barrows T. Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clinical materials., 1:233-257, 1986). They have also been used to prepare biodegradable drug delivery systems capable of releasing the drug or a biologically active substance over the desired length of time.
The advantages of using biodegradable polymers in biodegradable delivery systems of BAS are: ready availability of polymers, polymers used are nontoxic, biocompatibile and biodegradable, facile predictability of biodegradation rates of the polymers, ease of modification of the degradation characteristics of the polymers, regulatory approval of some of the commonly used biodegradable polymers, ease of fabrication of the polymers into various types of devices and the possibility of controlling the release of BAS by polymers over the desired length of time.
Release of a BAS from a polymeric delivery system depends on the physicochemical characteristics of the BAS molecule, polymer and other excipients, and the dosage form. The important factors governing BAS release characteristics from the delivery systems prepared with biodegradable polymers are polymer molecular weight, copolymer ratio, polymer hydrophilicity or lipophilicity, degree of plasticization, particle size and percentage of BAS-loading, hydrophilicity or lipophilicity of the incorporated BAS, solubility of the BAS in both the delivery system and in the biological fluids, physical form of the formulation (i.e. solution, suspension, gel or paste), and the method of preparation of the delivery system.
Several types of BAS delivery systems have been prepared from biodegradable polymers. These include microparticles such as microspheres and microcapsules (Schindler A, Jeffcoat R, Kimmel G L, Pitt C G, Wall M E and Zwelinger R., in: Contemporary Topics in Polymer Science, Pearce E M and Schaefgen J R, eds., Vol. 2, Plenum Publishing Corporation, New York, pp. 251-289, 1977; Mason N S, Gupta D V S, Keller, D W, Youngquist R S, and Sparks R F. Biomedical applications of microencapsulation, (Lim F, ed.), CRC Press Inc., Florida, pp. 75-84, 1984; Harrigan S E, McCarthy D A, Reuning R and Thies C., Midl. Macromol. Monograph, 5:91-100, 1978. ; Sanders L M, Burns R, Bitale K and Hoffman P., Clinical performance of nafarelin controlled release injectable: influence of formulation parameters on release kinetics and duration of efficacy., Proceedings of the International Symposium on Controlled Release and Bioactive Materials, 15:62-63, 1988; Mathiowitz E, Leong K and Langer R., Macromolecular drug release from bioerodible polyanhydride microspheres, in: Proceedings of the 12th International Symposium on Controlled Release of Bioactive Materials, Peppas N and Haluska R, eds., pp. 183, 1985), films (Jackanicz T M, Nash H A, Wise D L and Gregory J B. Polylactic acid as a biodegradable carrier for contraceptive steroids., Contraception, 8:227-233, 1973. ; Woodland J H R, Yolles S, Blake A B, Helrich M and Meyer F J. Long-acting delivery systems for narcotic antagonist. I. J. Med. Chem., 16:897-901, 1973), fibers (Eenink M J D, Maassen G C T, Sam A P, Geelen J A A, van Lieshout J B J M, Olijslager J, de Nijs H, and de Jager E. Development of a new long-acting contraceptive subdermal implant releasing 3-ketodesogeatrel., Proceedings of the 15th International Symposium on Controlled Release of Bioactive Materials, Controlled Release Society, Lincolnshire, Ill., pp.402-403, 1988), capsules (Sidman K R, Schwope A D, Steber W D, Rudolph S E, Paulin S B. Biodegradable, implantable sustained release systems based on glutamic acid copolymers. J. Membr. Sci., 7:277-291, 1980; Pitt C G, Gratzl M M, Jeffcoat M A, Zweidinger R and Schindler A. Sustained drug delivery systems II: Factors affecting release rates from poly-&egr;-caprolactone and related biodegradable polyesters., J. Pharm. Sci., 68(12):1534-1538, 1979), discs (Cowsar D R, Dunn R L., Biodegradable and non-biodegradable fibrous delivery systems, in: Long acting Contraceptive Delivery Systems, Zatuchni G I, Goldsmith A, Shelton J D and Sciarra J J, eds., Harper & Row, Publishers, Philadelphia, pp.145-148, 1984), wafers (Brem et al., J. Neurosurgery, 74:441-446, 1991), and solutions (Dunn et al., U.S. Pat. Nos. 4,938,763; 5,324,519; 5,324,520; 5,278,201; 5,340,849; 5,368,859; 5,660849; 5,632,727; 5,599,552; 5,487,897). All of these, with the exception of microparticles and solutions, need to be surgically implanted. This procedure is inconvenient and undesirable. Drug-loaded microspheres and solutions, on the other hand, can be easily injected. However, there are several inherent disadvantages of microparticles. These include the need for reconstitution before injection, the inability to remove the dose once it is injected, and the relative complicated manufacturing procedure.
While solutions described in patents by Dunn et al. offer the distinct advantage of ease of injection, an inherent disadvantage to the method of preparing solutions, as indicated in the patents is that, the amount of polymer which can be incorporated into n-methylpyrrolidone (NMP), the solvent of choice cited in their inventions, appears to be limited. This is particularly true when higher concentrations of high molecular weight polymers have to be dissolved in NMP by the method cited in the patents by Dunn et al. Therefore, there clearly exists a need for developing easily injectable, implantable or applicable biodegradable BAS delivery systems such as free-flowing and viscous liquids, gels, and pastes prepared from biodegradable polymers using alternative methods.
SUMMARY OF THE PRESENT INVENTION
The present invention relates to methods for preparing biodegradable delivery systems with or without biologically active substances (BAS). These biodegradable delivery systems are comprised of biodegradable polymers and plasticizers. The present invention also relates to the use of BAS-loaded delivery systems for obtaining controlled release delivery system of a BAS over a desired length of time. The resulting formulations may be either free-flowing or viscous liquids where the BAS is completely dissolved in the polymer-plasticizer blended liquids, or free-flowing or viscous suspensions where the BAS is suspended in the free-flowing or viscous polymer-plasticizer blended liquids. They can also be gels with dissolved or suspended BAS, or pastes with dissolved or suspended BAS.
The method of the present invention involves dissolving one or more biodegradable polymers and one or more plasticizers in a volatile solvent or mixture of volatile solvents. The BAS may then be added to this mixture. The volatile solvent is then removed using vacuum or evaporated at an elevated temperature, or removed using both vacuum and elevated temperature. The resulting BAS-loaded form

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biodegradable delivery systems of biologically active... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biodegradable delivery systems of biologically active..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biodegradable delivery systems of biologically active... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560050

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.