Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof
Patent
1995-05-18
1996-06-11
Dodson, Shelley A.
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From carboxylic acid or derivative thereof
528357, 528358, 528361, C08G 6308, C08G 6382
Patent
active
055257020
ABSTRACT:
The biodegradability of polyglycol-based block copolymers is improved by including in the copolymer a lactone. Representative of these biodegradable enhanced copolymers are those made of 1,2-butylene oxide and .epsilon.-caprolactone capped with a homopolymer block of ethylene oxide. The copolymers of this invention have many uses, such as nonionic surfactants, foam control agents, lubricants, and the like.
REFERENCES:
patent: 2962524 (1960-11-01), Hostettler et al.
patent: 3169945 (1965-02-01), Hostettler et al.
patent: 3219725 (1965-11-01), Kirkland et al.
patent: 3312753 (1967-04-01), Bailey, Jr. et al.
patent: 3578642 (1971-05-01), Mueller, Jr. et al.
patent: 3585257 (1971-06-01), Mueller, Jr. et al.
patent: 3629374 (1971-12-01), Lundberg et al.
patent: 3646170 (1972-02-01), Lundberg et al.
patent: 3660433 (1972-05-01), Mallan et al.
patent: 3689531 (1972-09-01), Critchfield et al.
patent: 3725352 (1973-04-01), Koleske et al.
patent: 3795701 (1974-03-01), Jenkins et al.
patent: 3867353 (1975-02-01), Hsieh et al.
patent: 3880955 (1975-04-01), Hsieh et al.
patent: 3921333 (1975-11-01), Clendinning et al.
patent: 4291155 (1981-09-01), Brochet
patent: 4698259 (1987-10-01), Hervey
patent: 5032671 (1991-07-01), Harper
Benedict et al. Polycaprolatione Degradation by Mixed and Pure Cultures of Bacteria and a Yeast, 28 J. App. Pol. Sci., 335-342 (1983).
Rafler et al. Biodegradable Polymers. 6th Comm. Polymerization of .epsilon.-Caprolactone. Acta Pol., 91-5 (1992).
Natta et al., Studies of Polymerization and Ring Formation. XXIII. .epsilon.-Caprolactone and its Polymers, 56 J. Am. Chem. Soc. 455 (1934).
Dubois et al., Macromolecular Engineering of Polylactones and Polylactides. 8. Ring-Opening Polymerization of .epsilon.-Caprolactone Initiated by Primary Amines and Trialkylaluminum, Macromolecules 1992, 25, 2614-2618.
Martini et al. Micellisation and Gelation of Triblock Copolymer of Ethylene Oxide & .epsilon.-Caprolactone, Cl.sub.n E.sub.m CL.sub.n, in Aqueous Solution, 90 (13) J. Chem. Soc. Faraday Trans., 1961-6 (1994).
Cerrai et al. Polyether-Polyester Block Copolymers by Non-Catalysed Polymerization of .epsilon.-Caprolactone with Poly(Ethylene Glycol), 30 Polymer 338-43 (1989).
Dubois et al. Macromolecular Engineering of Polylactones and Polylactides I. End-Functionalization of Poly .epsilon.-Caprolactone, 22 Pol. Bull. 475-82 (1989).
Barakat et al. Living Polymerization & Selective End Functionalization of .epsilon.-Caprolaxtone Using Zinc Alkoxides as Initiators, 24 Macromolecules 6542-5 (1991).
Dubois et al. Macromolecular Engineering Polylactones and Polylactides. 11. Synthesis & Use of Alkylaluminum Dialkoxides & Dithiolates as Promoters of Hydroxy Telechelic Poly (.epsilon.-Caprolactone) & .alpha.,.omega.-Dihydroxy Triblock Copolymers Containing Outer Polyester Blocks 26 Macromolecules 2730-5 (1993).
Dubois et al. Macromolecular Engineering of Polylactones and Polylactides. 12. Study of the Depolymerization Reactions of Poly(.epsilon.-Caprolactone) with Functional Aluminum Alkoxide End Groups, 26 Macromolecules 4407-12 (1993).
Dubois, et al., Aluminium Alkoxides: A Family of Versatile Initiators for the Ring-Opening Polymerization of Lactones and Lactides, Makromol. Chem., Macromol. Symp. 42/43, 103-116 (1991).
English Abstact Only Provided: Wang et al. Synthesis & Characterization of Biodegradable Polycaprolactone-Block-Polyethylene Glycol Copolymer, Inst. Chem., Acad. Sin., Beijing, Peop. Rep. China 100080) Gaofenzi Xuebao [GAXUE9] 1993, (5), 620-3 (Ch).
Abstract Only Provided: Martini et al. The Bioadhesive Properties of a Triblock Copolymer of .epsilon.-Caprolactone & Ethylene Oxide, 113 (2) Inst. J. Pharm. 223-9 (1995).
Abstract Only Provided: Biodegradable optically-active polymer prepn.--by ring opening polymerisation of epsilon-caprolactone and e.g. D-(-)-7-methyl-1,4-dioxepane-S-one, Derwent WPI Acc No: 93-140395/17.
Abstract Only Provided: Copolymers of lactic acid, 4-valerolactone and opt. higher lactone(s)! -- are prepd. by conventional catalysed melt polycondensation yielding useful mol. wt. and are biodegradable, Derwent WPI Acc No: 92-267986/32.
Okuda & Rushkin, Mono(cyclopentadienyl) titanium Complexes as Initators for the Living Ring-Opening Polymerization of .epsilon.-Caprolactone, Macromolecules, vol. 26, pp. 5530-5532 (1993).
Dahlmann & Rafler, Biodegradable polymers. 7th comm. On the mechanism of ring-opening polymerization of cyclic esters of aliphatic hydroxycarbolic acids by means of different tin compounds, Acta Polymer, vol. 44, 103-107 (1993).
Knani et al., Enzymatic Polyesterification in Organic Media. Enzyme-Catalyzed Synthesis of linear Polyesters. I. Condensation Polymerization of Linear Hydroxyesters. II Ring-Opening Polymerization of .epsilon.-Caprolactone, J. Pol. Sci.: Part A: Pol. Chem. vol. 31, 1221-1232 (1993).
Hovestadt et al., Tetraphenylporphyrin-aluminium compounds as initiators for the the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate: synthesis of homopolymers and copolymers with .epsilon.-caprolactone, ethylene oxide and propylene oxide, Polymer, vol. 33, No. 9, 1941-1948 (1992).
Duda & Penczek, Kinetics of .epsilon.-Caprolactone Polymerization on Dialkylaluminum Alkoxides, Makromol. Chem., Macromol. Symp., vol. 47, pp. 127-140 (1991).
Duda & Penczek, Anionic and Pseudoanionic Polymerization of .epsilon.-Caprolactone, Makromol. Chem., Macromol. Symp., vol. 42/43, pp. 135-143 (1991).
Sosnowski et al., Telechelic poly(.epsilon.-caprolactone) terminated at both ends with OH groups and its derivatization, Makromol. Chem., vol. 192, pp. 1457-1465 (1991).
Duda et al., Living Pseudoanionic Polymerization of .epsilon.-Caprolactone. Poly(.epsilon.-caprolactone)Free of Cyclics and with Controlled End Groups, Macromolecules, vol. 23, pp. 1640-1646 (1990).
Hofman et al., Polymerization of .epsilon.-caprolactone with kinetic suppression of macrocycles, Makromol. Chem., Rapid Commun. vol. 8, pp. 387-391 (1987).
Benedict et al., Fungal Degradation of Polycaprolactones, J. App. Pol. Sci., vol. 28, pp. 327-334 (1983).
Hamitou, et al., A New Catalyst for the Living Polymerization of Lactones to Polyesters, Macromolecules (Comm. to Editor), vol. 6, No. 4 (Jul.-Aug. 1973).
Lundberg et al., Lactone Polymers. III. Polymerization of .epsilon.-Caprolactone, J. Pol. Sci.: Part A, vol. 7, pp. 2915-2930 (1969).
Uyama & Kobayashi, Enzymatic Ring-Opening Polymerization of Lactones Catalyzed by Lipase, Chem. Letters (The Chemical Society of Japan), pp. 1149-1150, (1993).
Nojima et al., Crystallization of Block Copolymers II. Morphological Study of Poly(ethylene glycol)-Poly(.epsilon.-caprolactone) Block Copolymers, Pol. J., vol. 24, No. 11, pp. 1271-1280 (1992).
Endo et al., "Immortal" Polymerization of .epsilon.-caprolactone Initiated by Aluminum Porphyrin in the Presence of Alcohol, Macromolecules, vol. 20, pp. 2982-2988 (1987).
Perret & Skoulios, Synthese et caracterisation de copolymeres sequences polyoxyethylene/poly-.epsilon.-caprolactone, Die Makromolekulare Chemie, vol. 156, pp. 143-156 (1972).
Brink et al., Synthesis & Characterization of Polypropylene Oxide/Polycaprolactone Block Copolymers, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) (1989), 30(1), p. 294.
Stickney et al., Synthesis & Characterization of High Molecular Weight Poly(Propylene Oxide/.epsilon.-Caprolaxtone) Block Copolymers, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) (1991), 32(1), pp. 146-147.
Hseih & Wang, An Improved Process for .epsilon.-Caprolactone-Containing Block Polymers, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) (1984), 25(1), p. 230.
Burkhardt & Gardella, Hydrolysis of Poly(.epsilon.-caprolactone): A Surface Study by ESCA and SIMS, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) (1991), 32(1), pp. 116-117.
McCassie et al., Curent Methods for Determining Biodegradation of Polymeric Materials, Polym. Mat. Sci. and Eng., Proc. of the ACS Div. of Poly. Mat. Sci.and Eng., vol. 67 (1992), pp. 353-354.
Tokiwa et al., Biodegradation of Synthetic Polymers Containing Ester Bonds, Polym. Mat. Sci. and Eng., Proc. of the ACS Div. of Polym. M
Dodson Shelley A.
The Dow Chemical Company
LandOfFree
Biodegradable alkylene oxide-lactone copolymers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Biodegradable alkylene oxide-lactone copolymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biodegradable alkylene oxide-lactone copolymers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-352493