Biocompatible crosslinked polymers

Drug – bio-affecting and body treating compositions – Designated organic nonactive ingredient containing other... – Aftertreated solid synthetic organic polymer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S422000, C424S423000, C424S424000, C424S426000, C424S484000, C424S486000, C424S078080, C424S078160, C424S078170, C424S078240, C424S078260, C424S078280, C424S078350

Reexamination Certificate

active

06566406

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to biocompatible crosslinked polymers, methods for preparing and using same.
BACKGROUND OF THE INVENTION
In the field of medicine there has been a growing recognition of the benefits of using biocompatible crosslinked polymers for the treatment of local diseases. Local diseases are diseases that are manifested at local sites within the living animal or human body, for example atherosclerosis, postoperative adhesions, rheumatoid arthritis, cancer, and diabetes. Biocompatible crosslinked polymers may be used in drug and surgical treatments of such diseases.
Historically, many local diseases have been treated by systemic administration of drugs. In this approach, in order to achieve therapeutic levels of drugs at local disease sites, drugs are delivered (via oral administration or injection) at a high systemic concentration, often with adverse side effects. As an alternative, biocompatible crosslinked polymers may be used as carriers to deliver drugs to local sites within the body, thereby reducing the need for the systemic administration of high concentrations of drugs, while enhancing effectiveness.
Local diseases also have been treated with surgery. Many of these surgical procedures employ devices within the body. These devices may often be formed from or coated with biocompatible crosslinked polymers. For example, a surgical sealant is a device formed from biocompatible crosslinked polymers that may be used to reduce migration of fluid from or into a tissue. For surgical sealants, as with many other surgical procedures, it is sometimes necessary to leave devices in the body after surgery to provide a continuing therapeutic benefit. In such cases, it may be desired that the implant biodegrade over time, eliminating the need for a second surgical procedure to remove the implant after its usefulness has ended. Regardless of whether the implant biodegrades over time, it may also be used, as described above, to deliver drugs to local sites within the body.
Many surgical procedures are now performed in a minimally invasive fashion that reduces morbidity associated with the procedure. Minimally invasive surgery (“MIS”) encompasses laparoscopic, thoracoscopic, arthroscopic, intraluminal endoscopic, endovascular, interventional radiological, catheter-based cardiac (such as balloon angioplasty), and like techniques. These procedures allow mechanical access to the interior of the body with the least possible perturbation of the patient's body. Biocompatible crosslinked polymers may be advantageously used to form or coat many of these MIS tools. These polymers may also be used to form sutures, surgical clips, staples, sealants, tissue coatings, implants and drug delivery systems.
Most of the polymers used with MIS applications are pre-formed to a specific shape before being used in a given application. However, such pre-formed objects have limitations in MIS procedures because they, like other large objects, are difficult to transport through the small access sites afforded by MIS techniques. In addition, the shape of the pre-formed object may not be appropriate because the target tissues where such objects are likely to be used have a variety of shapes and sizes. To overcome these limitations, in situ curable or gelable biocompatible crosslinked polymer systems have been explored. The precursors of such systems are usually liquid in nature. These liquids are then transported to the target tissue and applied on the target organ or tissue. The liquid flows and conforms to the shape of the target organ. The shape of the conformed liquid is then preserved by polymerization or a gelation reaction. This approach has several advantages, including conformity to organ shapes and the ability to implant large quantities of liquid using MIS procedures.
One use of in situ curable biocompatible crosslinked polymers in MIS procedures is to form tissue coatings so as to prevent post-surgical adhesions. For example, J. L. Hill-West et al., “Prevention of Postoperative Adhesions in the Rat by In Situ Photopolymerization of Bioresorbable Hydrogel Barriers,”
Obstetrics and Gynecology
, 83(1):59 (1994) describes the use of free radical photopolymerizable water-soluble monomers to form biocompatible crosslinked polymers and thereby prevent post-operative adhesions in two animal models. U.S. Pat. No. 5,410,016 to Hubbell et al. describes the use of free radical photopolymerizable monomers to form biocompatible crosslinked polymers, which then are used as tissue adhesives, controlled-release carriers and as tissue coatings for the prevention of post-operative adhesions.
Free Radical Polymerization
Many of the biocompatible crosslinked polymers previously known used free radical polymerization of vinylic or acrylic functionalities. For example, the Hill-West article describes the use of free radical photopolymerizable, water soluble monomers consisting of 8000 molecular weight (“MW”) polyethylene glycol (“PEG”) extended at both ends with oligomers of lactic acid and further acrylated at both ends. The aforementioned Hubbell patent describes the use of acetophenone derivative or eosin initiated free radical polymerization of acrylic functionalities of water-soluble biodegradable macromolecules. U.S. Pat. No. 4,938,763 to Dunn describes the use of benzoyl peroxide initiated free radical polymerization of liquid prepolymers.
While free radical polymerization is useful for polymer synthesis, several considerations limit its suitability for use in the living animal or human body. First, the initiator which generates free radicals normally produces several small molecules with known or unknown toxicity. For example, one of the most commonly used photoinitiators, 2,2-dimethoxy 2-phenylacetophenone, generates methyl benzoate and other small compounds during the initiation step. The safety of these initiator fragments must be established before there can be widespread use of such systems for human or animal use. Second, free radicals are extremely reactive species and have life times ranging from 0.01 to 1 second during a typical free radical polymerization reaction. Third, the free radical polymerization, once initiated, is often uncontrollable, frequently producing polymers with high molecular weight and broad molecular weight distribution. Fourth, the most common functionalities used in free radical polymerization are vinylic or acrylic, and the vinyl/acrylic polymers produced by these compositions do not degrade inside the body. Fifth, free radical polymerizable monomers often need to be inhibited with a small amount of inhibitor to prevent the premature polymerization of vinyl functionality. The most commonly used inhibitors are phenols (for example, hydroquinone), which are toxic and hence can be used in only limited amounts, increasing the probability of premature polymerization and crosslinking. Finally, free radical polymerization is often exothermic, and the heat it generates may cause localized burn injuries.
Electrophilic-Nucleophilic Polymerization
Other crosslinked polymers have been formed using electrophilic-nucleophilic polymerization of polymers equipped with either electrophilic or nucleophilic functional groups. For example, U.S. Pat. Nos. 5,296,518 and 5,104,909 to Grasel et al. describe the formation of crosslinked polymers from ethylene oxide rich prepolymers, wherein a polyisocyanate or low molecular weight diisocyanate is used as the electrophilic polymer or crosslinker, and a polyoxyethylene based polyol with in situ generated amine groups is used as the nucleophilic precursor. U.S. Pat. No. 5,514,379 to Weissleder et al. describes the formation of biocompatible crosslinked polymers using polymeric precursors, including polyethylene glycol derivatives, each having multiple electrophilic or nucleophilic functional groups. U.S. Pat. No. 5,426,148 to Tucker describes sealant compositions based on an electrophilic-nucleophilic polymerization reaction between polyether acetoacetylate and polyether amine precursors. U.S. Pat. Nos.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biocompatible crosslinked polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biocompatible crosslinked polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biocompatible crosslinked polymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002223

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.