Biocompatible, antithrombogenic materials suitable for reconstru

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Cellular products or processes of preparing a cellular...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

521 62, 521 63, 521905, 521916, C08G 1814, C08G 1834

Patent

active

046615300

DESCRIPTION:

BRIEF SUMMARY
The invention relates to a new biocompatible, highly antithrombogenic material, of adjustable porosity, compliance and biodegradability, based on polylactic acid and segmented polyurethanes, for reconstructive surgery, which can be built up in layers with different compositions and characteristics and can be modelled in various shapes by including reinforcement material. The versatility of the material according to the present invention gives it a unique adaptability to the biological tissue in which it is incorporated, so that the synthetic material is built up into a new functional entity in reconstructive surgery.
Most synthetic materials used for reconstruction do not have the same mechanical proporties as the specific biological tissue and so do not match its specific function. It is known that the specific function of tissue is the trigger of the constant rebuilding of tissue in the growth during life. The variability of the elastic properties of the material according to the present invention renders it possible to match the mechanical properties of most of the biological tissue that has to be replaced in the body.
As its porosity can be varied, the ingrowth and overgrowth of tissue for complete incorporation can be regulated to provide optimum conditions for a specific replacement. Its adjustable biodegradability makes it possible, if desired, to have the synthetic material completely replaced by biological tissue.
Because of the possibility to produce the material in layers of different compositions, it is also possible to have the characteristics of each layer match the function of the biological tissue needed to rebuild that layer.
Because the material can be modelled by the shapes of mandrels by a dipping technique, every form can be produced to match the shape of an organ to be replaced, such as a tubular neo-artery for example. But also a more complex organ such as a trachea can be produced from this synthetic material, including a reinforcement material in the layers to maintain its shape during the alternating positive and negative pressures occurring in the trachea and to prevent collapsing. The constructive reinforcement material can be made of a different material, for example porous hydroxy apatite, which could induce bone formation.
Due to the biodegradability and high flexibility of the polylactide-polyurethane porous membranes, these materials can also be used to cover satisfactorily large experimental full-thickness skin wounds. Such membranes can effectively protect these wounds from infection and fluid loss for a long time.
Thus these combinations give a wide range of new possibilities in reconstructive surgery, all based on the same principle that perfect matching of the mechanical properties of biological tissue and synthetic materials creates one functional unity between biological tissue and the synthetic material which allows complete incorporation and rebuilding to a new organ. This new composition has been tested in animal experiments, primarily with rabbits, as vascular and tracheal prostheses and artificial skin. In these experiments true biocompatibility and a high degree of antithrombogenicity of the material was demonstrated. The experiments with the trachel prosthesis revealed that quick tissue ingrowth from the peritracheal tissue is induced if relatively large pores (100.mu.) were used on the outside. However, overgrowth of tissue on the luminal side needed only a thin connective tissue layer to which epithelium became firmly attached and differentiated. This was achieved with relatively small pores on the inside (10-20.mu.). Between the layers of various pore sizes a reinforcement of a spiral bead may be embedded.
This possibility of variation by means of different layers can also be used for the composition of an artificial skin where such functions as controlled evaporation, ingrowth of tissue, seeding of epithelial cells and resistance to outside micro-organism require layers with different characteristics.
More specifically the invention relates to the provisio

REFERENCES:
patent: 3896802 (1975-07-01), Williams
patent: 3975350 (1976-08-01), Hudgin et al.
patent: 4049592 (1977-09-01), Marans et al.
patent: 4132839 (1979-01-01), Marans et al.
patent: 4173689 (1979-11-01), Lyman et al.
Coury et al., Reprint from "Advances in Urethane Science & Technology, " vol. 9, pp. 130-168 (1984).
"Biologic and Synthetic Vascular Prostheses", edited by J. C. Stanley, M.D., published by Grune & Stratton, 1982.
"Structural Order and Blood Compatibility of Polymeric Prosthesis", IUPAC Macromolecular Symposium, Ciardelli, C. F. & Giusti, P. Eds. Pergammon Press, Ltd., Oxford, 1980.
"An Elastomeric Vascular Prostheses", vol. XXIV Trans. Am. Soc. Artif. Intern. Organs, 1978, p. 209.
"Blood-Materials Interactions--20 Years of Frustration"; vol. XXVII, by Andrade et al., Trans. Am. Soc. Artif. Intern. Organs, 1981, p. 659.
"Experimental Study of the New Synthetic Vascular Graft" by Gruss et al., J. Cardiovas. Surg., 22, 1981 at page 518 of the XV World Congress of the International Cardiovascular Society.
"Biodegradable Materials of Poly(L-Lactic Acid): 1. Melt-Spun and Solution-Spun Fibres", by B. Eling, S. Gogolewski and A. J. Pennings, Polymers, 1982, vol. 23, Oct., pp. 1587-1593.
"Infrared Studies of Segmented Polyurethane Elastomers. I. Hydrogen Bonding", by R. W. Seymour, G. M. Estes and S. L. Cooper, Reprinted from Macromolecules, vol. 3, pp. 579-583, Sep.-Oct. 1970.
"Infrared Studies of Segmented Polyurethane Elastomers. II. Infrared Dichroism", by G. M. Estes, R. W. Seymour and S. L. Cooper, reprinted from Macromolecules, vol. 4, pp. 452-457, Jul.-Aug. 1971.
"Thermoplastic Polyurethane Elastomer Molecular Weight-Property Relations, Further Studies", by C. S. Schollengberger and K. Dinbergs, Advances in Urethane Science and Technology, vol. 7, 1979, pp. 1-34.
"Study of the Degradation of Polyurethanes. II. ESR Study on the Photodecomposition of Polyurethanes and Ethylphenylcarbamate", Polymer Letters Edition, vol. 13, pp. 535-542 (1975).
"Life Support Systems", The Journal of the European Society for Artificial Organs, Proceedings XI Annual Meeting ESAO, Alpbach-Innsbruck, Austria, Sep. 1984, vol. 2, Supplement 1.
"Biodegradable Materials of Polylactides, 4.sup.a)--Porous Biomedical Materials Based on Mixtures of Polylactides and Polyurethanes", by S. Gogolewski and A. J. Pennings, Makromol. Chem. Rapid Commun. 3, 839-845 (1982).
"Artificial Organs", Fourth Congress of the International Society for Artificial Organs, vol. 7, Abstracts, Nov. 14-17, 1983.
"Growth of a Neo-Artery Induced by a Biodegradable Polymeric Vascular Prosthesis", by S. Gogolewski and A. J. Pennings, Makromol. Chem. Rapid Commun., 4, 213-219 (1983).
Macro '83 Bucharest-Romania, Sep. 5-9, 1983, 3rd Circular, "Porous Polylactide Materials for Medical Application", by S. Gogolewski and A. J. Pennings.
Paper entitled "Gronigen Biodegradable Vascular Prosthesis", by S. Gogolewski and A. J. Pennings.
"Resorbable Materials of Poly (L-lactide). II. Fibers Spun from Solutions of Poly(L-lactide) in Good Solvents", by S. Gogolewski and A. J. Pennings, Journal of Applied Polymer Science, vol. 28, 1045-1061 (1983).
Reprint from Polymer, "General Crystallization Behaviour of Poly (L-lactic acid) PLLA: 2, Eutectic Crystallization of PLLA" by R. J. M. Zwlers, S. Gogolewski and A. J. Pennings.
"Development of a Neo-Artery Induced by a Biodegradable Polymeric Vascular Prosthesis", by E. Lommen et al., Trans. Am. Soc. Artif. Intern. Organs, vol. XXIX, 1983, pp. 255-259.
"Microporous, Compliant and Biodegrable Vascular Prostheses", 4th Congress--Intl. Soc. for Artificial Organs, Nov. 14-17, 1983, vol. 7, Abstracts.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biocompatible, antithrombogenic materials suitable for reconstru does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biocompatible, antithrombogenic materials suitable for reconstru, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biocompatible, antithrombogenic materials suitable for reconstru will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-477742

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.