Biochemical blocking layer for liquid crystal assay

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing liquid or solid sample

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S051000, C422S051000, C422S068100, C435S007100, C435S287800, C435S288700

Reexamination Certificate

active

06692699

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains generally to the field of assays for biological and chemical substances and more specifically to blocking layers for use in liquid crystal assays.
BACKGROUND OF THE INVENTION
Methods for detecting the presence of biological substances and chemical compounds in samples has been an area of continuous development in the field of analytical chemistry and biochemistry. Various methods have been developed that allow for the detection of various target species in samples taken from sources such as the environment or a living organism. Detection of a target species is often necessary in clinical situations before a prescribed method of treatment may be undertaken and an illness diagnosed.
Several types of assay currently exist for detecting the presence of target species in samples. One conventional type of assay is the radioimmunoassay (RIA). RIA is a highly sensitive technique that can detect very low concentrations of antigen or antibody in a sample. RIA involves the competitive binding of radiolabeled antigen and unlabeled antigen to a high-affinity antibody. Typically, the labeled antigen is mixed with the antibody at a concentration that just saturates the antigen-binding sites of the antibody molecule. Then, increasing amounts of unlabeled antigen of unknown concentration are added. Because the antibody does not distinguish between labeled and unlabeled antigen, the two types of antigen compete for the available binding sites on the antibody. By measuring the amount of labeled antigen free in solutions, it is possible to determine the concentration of unlabeled antigen. Kuby, J.,
Immunology,
W. H. Freeman and Company, New York, N.Y. (1991), pp. 147-150.
Another type of assay which has become increasingly popular for detecting the presence of pathogenic organisms is the enzyme-linked immunosorbent assay or ELISA. This type of assay allows pathogenic organisms to be detected using biological species capable of recognizing epitopes associated with proteins, viruses and bacteria. Generally, in an ELISA assay, an enzyme conjugated to an antibody will react with a colorless substrate to generate a colored reaction product if a target species is present in the sample. Kuby, J.,
Immunology,
W. H. Freeman and Company, New York, N.Y. (1991), pp. 147-150. Physically adsorbed bovine serum albumin has been used in various such assays as a blocking layer because it has been found to prevent the non-specific adsorption of biological species that might interfere with or result in erroneous assay results.
Although ELISA and other immunosorbent assays are simple and widely used methods, they have several disadvantages. Tizard, I. R.
Veterinary Immunology: An Introduction,
W. B. Saunders Company, Philadelphia, Pa. (1996); Harlow, Ed.; Lane, D.
Antibodies: A Laboratory Manual
, Cold Springs Harbor Laboratory, Cold Springs Harbor, N.Y. (1988); Van Oss, C. J.; van Regenmortel, M. H. V.
Immunochemistry,
Dekker, New York, N.Y. (1994). Labeled antibodies can be expensive, especially for assays requiring radioactive labels. Additionally, radioactive labels require special handling as radioactive materials are also hazardous. The labeling of a compound, which is the main drawback of these methods, may alter the binding affinity of antibody to analyte. Enzymes are large molecules that may sterically inhibit antibody activity or it may lose enzymatic activity after conjugation to antibodies. Another concern with immunosorbent assays is non-specific binding of proteins to the solid support, antigen, and antibody complexes. This can lead to an increase in background noise, loss of sensitivity, and potentially a false positive test result. Additionally, the immobilization of proteins on the solid support can affect the conformation of the binding sites, leading to a decrease in sensitivity, and possible increase in non-specific binding. For example, physical adsorption of proteins to polystyrene wells occurs due to hydrophobic interactions between the protein and solid support. These interactions can also promote unfolding of the amino acid chains in order to cover the polystyrene surface. This can lead to possible inactivation of the binding sites.
Qualitative diagnostic assays based on aggregation of protein coated beads can also be used for the detection of proteins and viruses. Tizard, I. R.
Veterinary Immunology: An Introduction,
W. B. Saunders Company, Philadelphia, Pa. (1996): Cocchi, J. M.; Trabaud, M. A.; Grange, J.; Serres, P. F.; Desgranges, C.
J. Immunological Meth.,
160, (1993), pp. 1; Starkey, C. A.; Yen-Lieberman, B.; Proffitt, M. R.
J. Clin. Microbiol.,
28, (1990), pp. 819; Van Oss, C. J.; van Regenmortel, M. H. V.
Immunochemistry,
Dekker, New York, N.Y. (1994). For direct detection of antibodies, antigen is non-specifically adsorbed to the surface of latex beads which are several microns in diameter. The protein-coated beads possess a slight charge which prevents aggregation. Introduction of an antibody specific to the adsorbed protein can link the beads, leading to agglutination. The agglutination can be detected by eye or by other methods such as quasi-elastic light scattering. Visual agglutination assays, however, are not sensitive and measurement by quasi-elastic light scattering requires complex apparatus and is not suitable for use in locations remote from central labs. Furthermore, it is not possible to perform highly multiplexed agglutination assays using microarrays because of the bulk solution methodology of this type of assay.
To overcome the need for labeled proteins, principles based on direct detection of the binding of proteins and ligands have been investigated. Schmitt, F.-J.; Haussling, L.; Ringsdorf, H.; Knoll, W.
Thin Solid Films,
210/211, (1992), pp. 815; Hauslling, L.; Ringsdorf, H.
Langmuir,
7, (1991), pp. 1837. Surface plasmon reflectometry (SPR) is one such method. SPR is sensitive to changes in the index of refraction of a fluid near a thin metal surface that has been excited by evanescent electromagnetic waves. The binding of proteins to ligands can be detected by examining an increase in the resonance angle or intensity of signal. Typical angular resolution using this method is 0.005° allowing detection of sub-angstrom changes in adsorbed film thickness with SPR. However, care must be taken to ensure that the change in resonance angle is due to binding and not just a change in the bulk solution index of refraction. A thermally stable environment is required due to the dependence of the resonance angle on the index of refraction of the fluid. An increase in temperature from 25° C. to 26° C. in water amounts to a change in the index of refraction by 0.0001. This increase would result in the change in resonance angle of approximately 0.015° or roughly 0.2 nm in the observed height of a protein layer. This temperature stability requirement makes SPR unsuitable for most field applications. In addition, non-specific adsorption of molecules on to or near the sensor surface can lead to false changes in signal, requiring a surface which minimizes non-specific interactions. Therefore, surface plasmon reflectivity is more complex than ELISA, requires laboratory based equipment, and the preparation of a well defined surface.
The use of ion-channel switches for detecting biospecific interactions has been reported. Cornell, B. A.; Braach-Maksvytis, V. L. B.; King, L. G.; Osman, P. D. J.; Raguse, B.; Wieczorek, L.; Pace, R. J.
Nature,
387, (1997), pp. 580. In a device using ion channel switches, a tethered lipid membrane incorporating mobile ion channels is separated from a gold electrode surface by an ion reservoir. The gold surface serves as an anchor for the membrane and acts as an electrode. Within the membrane are upper and lower ion channels. In order to become conductive, the outer and inner ion channels must align and form a dimer. Membrane spanning lipids, which help stabilize the lipid membrane, are attached at one end to the electrode surface and are terminated with ligands that extend away from the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biochemical blocking layer for liquid crystal assay does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biochemical blocking layer for liquid crystal assay, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biochemical blocking layer for liquid crystal assay will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3310615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.