Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert
Reexamination Certificate
2000-08-25
2002-07-02
Naff, David M. (Department: 1651)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Implant or insert
C424S093700, C435S176000, C435S395000, C435S402000
Reexamination Certificate
active
06413538
ABSTRACT:
The present invention relates to the synthesis of bioactive ceramic templates for optimum in vitro formation of bone and bone-like tissue, and the use of bioactive substrates for the enhanced cellular attachment and function of anchorage-dependent cells. The fundamental mechanisms by which material surfaces elicit the in vitro response from bone cells are optimized, thereby leading to high formation rates of extracellular material with typical characteristics of bone tissue.
BACKGROUND OF THE INVENTION
Materials were first used to provide structural support during healing of bones, or to replace damaged or diseased bone tissue. Historically, the most important material selection criterion was inertness. It was believed that the implant material should only provoke the slightest reactions in the body. It is important to realize, though, that no matter how chemically inert a material may be, it always provokes a reaction upon implantation. The intensity of the reaction depends not only on the surface and bulk properties of the implant material, but also on the trauma at the time of surgery, the site of implantation, and the relative motion at the tissue-implant interface. This observation has prompted the use of “bioactive” materials instead of so-called inert materials. The implication is that a bioactive material must provoke a beneficial tissue response, specifically it must elicit the formation of the normal tissue at its surface and create an interface that promotes long functional life. Whereas the field of calcified tissue reconstruction has achieved this goal, this advance is not an end state, but merely a stepping stone for an even more ambitious goal: the creation of materials that are capable of serving as templates for in vitro bone tissue formation. This is part of the true future of biomaterials: creating materials that, once inserted into the body, regenerate tissues rather than replace them.
Cell culture studies with osteoprogenitor cells or cells of osteoblastic phenotype have been performed, but never achieved acceptable results. Some of these prior studies did not seek the optimization per se of extracellular material synthesis. Some prior studies used osteoprogenitor cells present in bone marrow extracts. Regardless of whether focus is placed on the determination of osteoblastic phenotype expression or elsewhere, these results can be used to determine whether one of the resultant phenomena of osteoblastic phenotypic activity was extensive or not.
It is known to obtain bone marrow cells from the femora of young adult male Wistar rats by washing them out with &agr; MEM (minimal essential medium) supplemented with 15% fetal bovine serum, freshly prepared ascorbic acid, sodium &bgr;-glycerophosphate, dexamethasone (DEX) and antibiotics. See, Davies et al. “Early extracellular matrix synthesis by bone cells,” Bone-Biomaterials Workshop, J. E. Davies Ed., University of Toronto Press, (December 1990). A quantity of this cell suspension, e.g., 30 ml, containing cells from two femora, is aliquoted on to the material substrate. In a humidified 95% air—5% CO
2
atmosphere the culture is maintained for a minimum of two weeks. It was shown that a calcified matrix of globular accretions, also containing sulphur, is formed. This layer was typical for reversal lines in bone tissue, the cementum layer, and was considered by the authors as evidence that the calcified layer is the result of the expression of the osteoblastic phenotype by the cultured cells. Subsequently, there was what was called “frank bone formation.” Thus, matrix production can start within a time period of intermediate duration (17 days) by differentiating bone-derived cells in vitro. It has also been reported, however, that no calcified tissue formation has been obtained on porous ceramics. See Uchida et al. “Growth of bone marrow cells on porous ceramics in vitro,” J. Biomed, Mat. Res. 21:1-10 (1987). The observation in the prior art with respect to the intrinsic capability of cells to deposit a cement-like line is in any event certainly correct. The cell culture method described above is derived form Maniatopulos et al.'s “Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats,” Cell Tissue Res. 254:317-330 (1988), wherein this particular cellular activity was shown to be present in cultures without any tissue stimulating biomaterial.
The effect of porous calcium phosphate ceramic on growth and hormonal response of periosteal fibroblasts, osteoblasts, and chondrocytes has been disclosed by other workers. See, e.g., Cheng et al., “Growth of osteoblasts on porous calcium phosphate ceramic: an in vitro model for biocompatibility study,” Biomaterials, 10, 63-67 (1989). As reported in this reference, the number of these cells increased 29-, 23- and 17-fold during a ten week time period. Osteoblasts retained their phenotypic expression by producing only Type I collagens. Previously, Cheng had shown that the phenotypic expression of canine chondrocytes had been retained up to 13 months when cultured on porous hydroxyapatite ceramic granules. See Cheng, “In vitro cartilage formation on porous hydroxyapatite ceramic granules,” In Vitro Cellular & Developmental Biology, 21:6, 353-357 (1985). The elaboration of extracellular matrix reportedly started to appear at week one and increased throughout a thirteen month period.
Still others have studied the attachment and subsequent growth of V79 cells in contact with various calcium phosphate ceramics and found that cell growth was markedly inhibited by hydroxyapatite, and slightly inhibited by tricalcium phosphate and glass ceramics. See Katsufumi et al., “The influence of calcium phosphate ceramics and glass ceramic on cultured cells and their surrounding media,” J. Biomed Mat. Res., 24:1049-1066 (1989). Under conditions of phagocytosis of small bioactive ceramic powders, RNA transcription and protein synthesis of osteoblast populations have been stimulated. See Gregoire et al. “The influence of calcium phosphate biomaterials on human bone cell activities: An in vitro approach,” J. Biomed Mat. Res. 24:165-177 (1990). This phenomenon has also been observed for phagocytosing fibroblasts. It has been suggested that the increase of
3
H-thymidine incorporation into DNA and the decrease of alkaline phosphatase activity probably resulted from secondary calcium messenger pathways. See Orly et al. “Effect of synthetic calcium phosphate on the
3
H-thymidine incorporation and alkaline phosphatase activity of human fibroblasts in culture,” J. Biomed Mat. Res. 23:1433-1440 (1989). Another study by Puleo et al., “Osteoblast responses to orthopaedic implant materials in vitro,” J. Biomed Mat. Res. 25:711-723 (1991), provided inconclusive results regarding osteoblast attachment, osteoblast proliferation and collagen-synthesis.
Another set of studies performed in vivo, documenting materials-dependent tissue response patterns are noteworthy. A series of experiments with porous hydroxyapatite and bone marrow cells was started by Ohgushi, Goldberg and Caplan and subsequently continued separately by Ohgushi and associates in Nara, Japan and Caplan and associates in Cleveland, Ohio (USA). See Ohgushi et al. “Heterotopic osteogenesis in porous ceramics induced by marrow cells,” J. Ortho. Res., 7:568-578 (1989). These experiments demonstrate that the osteoprogenitor nature of the cells of a marrow cell suspension, implanted in heterotopic sites, are activated more readily when the suspension is infused into porous hydroxyapatite than when implanted by itself.
Finally, U.S. Pat. No. 4,609,501—Caplan et al. discloses the stimulation of bone growth that includes the in vitro exposure of isogenic fibroblasts to a soluble bone protein capable of stimulating a chondrogenic response. The exposed cells are combined with a biodegradable carrier such as fibrin, although it is also suggested that the exposed cells may also be incubated with a prosthesis. A related Caplan et al. patent, U.S. Pat. No. 4,609,551, discloses techniques for delivering the bone protein t
Boettiger David
Ducheyne Paul
Garcia Andres J.
Naff David M.
The Trustees of the University of Pennsylvania
Woodcock & Washburn LLP
LandOfFree
Bioactive glass or ceramic substrates having bound cell... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bioactive glass or ceramic substrates having bound cell..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioactive glass or ceramic substrates having bound cell... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2874194