Bioactive coating for vaso-occlusive devices

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06187024

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a medical device for forming an embolism within the vasculature of a patient. More particularly, it is a vaso-occlusion device at least partially coated with a bioactive agent, a collagenous material, or a collagenous coating optionally containing or coated with other bioactive agents. A highly flexible vaso-occlusive device coated with such materials also forms a variation of the invention.
BACKGROUND
Vaso-occlusive devices are surgical implants that are placed within open sites in the vasculature of the human body. The devices are introduced typically via a catheter to the site within the vasculature that is to be closed. That site may be within the lumen of a blood vessel or perhaps within an aneurysm stemming from a blood vessel.
There are a variety of materials and devices which have been used to create such emboli. For instance, injectable fluids such as microfibrillar collagen, various polymeric foams and beads have also been used. Polymeric resins, particularly cyanoacrylate resins, have been used as injectable vaso-occlusive materials. Both the injectable gel and resin materials are typically mixed with a radio-opaque material to allow accurate siting of the resulted material. There are significant risks involved in use of a cyanoacrylates, because of the potential for misplacement. Such a misplacement would create emboli in undesired areas. Cyanoacrylate resins or glues are somewhat difficult, if not impossible, to retrieve once they are improperly placed.
Other available vaso-occlusive devices include mechanical vaso-occlusive devices. Examples of such devices are helically wound coils and braids. Various shaped coils have been described. For example, U.S. Pat. No. 5,624,461, to Mariant, describes a three-dimensional in-filling vaso-occlusive coil. U.S. Pat. No. 5,639,277, to Mariant et al., describes embolic coils having twisted helical shapes and U.S. Pat. No. 5,649,949, to Wallace et al., describes variable cross-section conical vaso-occlusive coils. A random shape is described, as well. U.S. Pat. No. 5,645,082, to Sung et al., describes methods for treating arrhythmia using coils which assume random configurations upon deployment from a catheter. Spherical shaped occlusive devices are described in U.S. Pat. No. 5,645,558 to Horton. Horton describes how one or more strands can be wound to form a substantially hollow spherical or ovoid shape when deployed in a vessel. U.S. Pat. Nos. 5,690,666 and 5,718,711, by Berenstein et al., show a very flexible vaso-occlusive coil having little or no shape after introduction into the vascular space.
There are a variety of ways of discharging shaped coils and linear coils into the human vasculature. In addition to those patents which apparently describe only the physical pushing of a coil out into the vasculature (e.g., Ritchart et al.), there are a number of other ways to release the coil at a specifically chosen time and site. U.S. Pat. No. 5,354,295 and its parent, U.S. Pat. No. 5,122,136, both to Guglielmi et al., describe an electrolytically detachable embolic device. That is to say that a joint between the pusher wire and the vaso-occlusive portion dissolves or erodes when an electrical current is applied to the pusher wire.
A variety of mechanically detachable devices are also known. For instance, U.S. Pat. No. 5,234,437, to Sepetka, shows a method of unscrewing a helically wound coil from a pusher having an interlocking surface. U.S. Pat. No. 5,250,071, to Palermo, shows an embolic coil assembly using interlocking clasps that are mounted both on the pusher and on the embolic coil. U.S. Pat. No. 5,261,916, to Engelson, shows a detachable pusher-vaso-occlusive coil assembly having an interlocking ball and keyway-type coupling. U.S. Pat. No. 5,304,195, to Twyford et al., shows a pusher-vaso-occlusive coil assembly having an affixed, proximately extending wire carrying a ball on its proximal end and a pusher having a similar end. The two ends are interlocked and disengage when expelled from the distal tip of the catheter. U.S. Pat. No. 5,312,415, to Palermo, also shows a method for discharging numerous coils from a single pusher by use of a guidewire which has a section capable of interconnecting with the interior of the helically wound coil. U.S. Pat. No. 5,350,397, to Palermo et al., shows a pusher having a throat at its distal end and a pusher through its axis. The pusher sheath will hold onto the end of an embolic coil and will then be released upon pushing the axially placed pusher wire against the member found on the proximal end of the vaso-occlusive coil.
In addition, several patents describe deployable vaso-occlusive devices that have added materials designed to increase their thrombogenicity. For example, fibered vaso-occlusive devices have been described at a variety of patents assigned to Target Therapeutics, Inc., of Fremont, Calif. Such vaso-occlusive coils having attached fibers is shown in U.S. Pat. Nos. 5,226,911 and 5,304,194, both to Chee et al. Another vaso-occlusive coil having attached fibrous materials is found in U.S. Pat. No. 5,382,259, to Phelps et al. The Phelps et al. patent describes a vaso-occlusive coil which is covered with a polymeric fibrous braid on its exterior surface. U.S. Pat. No. 5,658,308, to Snyder, is directed to a coil having a bioactive core.
In other attempts to increase thrombogenicity, vaso-occlusive coils have also been treated with variety of substances. For instance, U.S. Pat. No. 4,994,069, to Ritchart et al., describes a vaso-occlusive coil that assumes a linear helical configuration when stretched and a folded, convoluted configuration when relaxed. The stretched condition is used in placing the coil at the desired site (via passage through the catheter) and the coil assumes a relaxed configuration—which is better suited to occlude the vessel—once the device is so-placed. Ritchart et al. describes a variety of shapes. The secondary shapes of the disclosed coils include “flower” shapes and double vortices. The coils may be coated with agarose, collagen, or sugar.
U.S. Pat. No. 5,669,931, to Kupiecki, et, al discloses coils that may be filled or coated with thrombotic or medicinal material. U.S. Pat. No. 5,749,894, to Engleson, discloses polymer-coated vaso-occlusion devices. U.S. Pat. No. 5,690,671 to McGurk et, al discloses an embolic element which may include a coating, such as collagen, on the filament surface.
U.S. Pat. No. 5,536,274 to Neuss shows a spiral implant which may assume a variety of secondary shapes. Some complex shapes can be formed by interconnecting two or more of the spiral-shaped implants. To promote blood coagulation, the implants may be coated with metal particles, silicone, PTFE, rubber lattices, or polymers.
None of the above documents discuss vaso-occlusive devices such as those found below, and specifically not the preferred combination vaso-occlusive coils associated with the coating materials in the configuration disclosed herein.
SUMMARY OF THE INVENTION
The invention includes a vaso-occlusive device comprising: a) a biocompatible metal or polymer vaso-occlusive base member or structure, e.g., a coil or braid or aneurysm neck bridge; b) optional fibrous materials attached to the base member; c)an inner optional coating treatment or tie coating on said vaso-occlusive member; d) a collagenous outer coating and/or other natural or synthetic proteins one or more bioactive agents optionally associated with said collagenous outer layer. The vaso-occlusive member may be a coil, a braid, a sphere, or other shaped structure. In a preferred embodiment, the vaso-occlusive member is an elongated helical coil made up of a series of helical windings, for instance a cylindrical helical coil. Preferably, the coil is made of gold, rhenium, platinum, palladium, rhodium, ruthenium, stainless steel, tungsten and alloys, titanium
ickle and alloys thereof.
The optional, inner tie coating is a material suitable for providing a binding layer between the vaso-occlusive device and the outer collagenous or proteinaceo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bioactive coating for vaso-occlusive devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bioactive coating for vaso-occlusive devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioactive coating for vaso-occlusive devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2605227

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.