Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert
Reexamination Certificate
1999-01-29
2001-01-23
Azpuru, Carlos A. (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Implant or insert
C514S772300, C606S228000, C606S230000
Reexamination Certificate
active
06177094
ABSTRACT:
BACKGROUND OF THE INVENTION
A blend of bioabsorbable copolymers is disclosed. More particularly, a blend of 1) a bioabsorbable copolymer obtained by polymerizing a major amount of epsilon-caprolactone and a minor amount of at least one other copolymerizable monomer in the presence of a polyhydric alcohol initiator and 2) the reaction product obtained by mixing polyalkylene glycol and a coplymer of glycolide/lactide copolymer is disclosed.
It is well known in the art that surgical sutures may be coated to enhance certain physical characteristics of the suture, such as the ease of a sliding a knot into place on the suture, commonly referred to as knot repositioning or knot run down. Suitable surgical suture coatings must exhibit good knot run down without being so lubricious as to sacrifice knot security.
U.S. Pat. No. 5,312,437 discloses an absorbable suture coating composition comprising the product obtained by reacting a mixture of poly(oxypropylene)glycol and a coplymer of lactide/glycolide copolymer.
U.S. Pat. No. 5,425,949 discloses a bioabsorbable copolymer obtained by polymerizing a major amount of epsilon-caprolactone and a minor amount of at least one other copolymerizable monomer in the presence of a polyhydric alcohol initiator. The copolymer can be used as a suture coating.
Notwithstanding the suitable suture coatings described above, it would be advantageous to provide another bioabsorbable suture coating such that when applied to multifilament bioabsorbable sutures, the physical characteristics of the multifilament sutures are even more enhanced.
SUMMARY OF THE INVENTION
A blend is provided which comprises the reaction product of 1) a bioabsorbable copolymer obtained by polymerizing a major amount of epsilon-caprolactone and a minor amount of at least one other copolymerizable monomer in the presence of a polyhydric alcohol initiator and 2) the reaction product obtained by mixing polyalkylene glycol and a coplymer of glycolide/lactide copolymer.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The bioabsorbable blend may be prepared by conventional methods well known in the art. Preferrably, about 70 to about 90 percent by weight epilon-caprolactone containing copolymer is mixed with about 10 to about 30 percent by weight of the polyalkylene glycol containing glycol mixture at about 150° C. and stirred for about 4 hours. More preferrebly, about 80 percent by weight epilon-caprolactone containing copolymer is mixed with about 20 percent by weight of the polyalkylene glycol containing glycol mixture at about 150° C. and stirred for about 4 hours.
Suitable epsilon-caprolactone containing coplymers may be polymerized by conventional polymerization techniques that are well known and disclosed in the prior art can be utilized in preparing the bioabsorbable copolymer of the present invention. The bioabsorbable copolymer is obtained by polymerizing a major amount of epsilon-caprolactone and a minor amount of at least one other copolymerizable monomer or mixture of such monomers in the presence of a polyhydric alcohol initiator. The polymerization of these monomers contemplates all of the various types of monomer addition, i.e., simultaneous, sequential, simultaneous followed by sequential, sequential followed by simultaneous, etc.
Suitable monomers which can be copolymerized with epsilon-caprolactone include glycolide, lactide, p-dioxanone and trimethylene carbonate.
Suitable polyhydric alcohol initiators include glycerol, trimethylolpropane, 1,2,4-butanetriol, 1,2,6-hexanetriol, triethanolamine, triisopropanolamine, erythritol, threitol, pentaerythritol, ribitol, arabinitol, xylitol, N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine, N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine, dipentaerythritol, allitol, dulcitol, glucitol, altritol, iditol, sorbitol, mannitol, inositol, and the like. The use of a polyhydric alcohol initiator, i.e., an alcohol possessing three or more hydroxyl groups, provides a copolymer having a branched, or “star”, configuration. The branched structure of the bioabsorbable copolymer herein exerts a characteristic influence on its bioabsorption behavior making it useful, among other applications, as a component in a surgical suture coating material.
Suitable epsilon caprolactone containing copolymers can contain from about 70 to about 98, and preferably from about 80 to about 95, weight percent epsilon-caprolactone-derived units, the balance of the copolymer being derived from the other copolymerizable monomer(s). The inherent viscosity of the copolymer generally ranges from about 0.10 to about 0.60, and preferably from about 0.20 to about 0.50, dl/g when measured in chloroform at a concentration of 0.2500 g/dl at 30° C. The polyhydric alcohol initiator is generally employed in small amounts, e.g., from about 0.5 to about 5, and preferably from about 0.1 to about 2, weight percent of the total monomer mixture.
The poly(alkylene)glycol containing composition with which the epsilon-caprolactone copolymer is blended preferrably is obtained by reacting a mixture of poly(alkylene)glycol with a lactide/glycolide copolymer in the presence or absence of an initiator.
Preferrably the poly(alkylene)glycol is poly(ethylene) glycol or poly(propylene)glycol, with poly(propylene)glycol being most preferred. Suitable poly(propylene)glycols have a molecular weight ranging from about 400 to about 6000 and more preferrably from about 1000 to about 4000. Suitable poly(propylene)glycols include Pluracol, Voranol, Poly G, Polylite, Thanol, and Niax, commercially available from BASF-Wyandotte, Dow Chemical Company, Olin, Reichhold, Texaco and Union Carbide, respectively.
Suitable lactide/glycolide copolymers include from about 65 to about 90 mole percent lactide and from about 10 to about 35 mole percent glycolide and about 0 to about 5 mole percent of other bioabsorbable monomers copolymerizable therewith, such as epsilon-caprolactone, dioxanone, and trimethylene carbonate, etc. Preferrably the gylcolide/lactide copolymers have from about 85 to about 70 mole percent lactide and about 15 to about 30 mole percent glycolide, with 82 mole percent lactide and 18 mole percent glycolide being most preferred. Suitable lactide/glycolide copolymers possess a glass transistion temperature of at least about 54° C. when measured by differential scanning calorimetry at 20° C./min and an inherent viscosity of at least about 0.9 when measured in chloroform at a concentration of 0.25 g/dl.
The poly(propylene)glycol containing composition is prepared by reacting poly(propylene)glycol with lactide/glycolide copolymers, generally in the presence of an esterification catalyst such as stannous chloride, stannous octoate, etc., and, optionally, an initiator. Suitable initiators include glycols such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol, with diethylene glycol being preferred. The weight ratio of poly(propylene)glycol to lactide/glycolide copolymer can range from about 4:1 to about 1:4 and preferrably from about 2:1 to about 1:2, respectively. Typically, the reaction is carried out in an inert atmosphere, e.g., nitrogen, at temperatures ranging from about 125° C. to about 200° C. and preferrably from about 150° C. to about 160° C. Suitable poly(propylene)glycol containing compositions, possess and inherent viscosity of at least about 0.9 and more preferrably below about 0.5, when measured in chloroform at a concentration of 0.25 g/dl.
The bioabsorbable blend is non-toxic and physiologically inert. Depending on its particular physical and bioabsorption properties (to a large extent influenced by the nature of the initiators and monomers from which it is prepared), the bioabsorbable blend herein can be used in the fabrication in whole or in part of a variety of implantable medical devices and prostheses, e.g., clips, staples, sutures, suture coatings, etc. Applied to a suture, a coating composition containing the bioabsorbable blend results in a suture having suitable lubricity, knot tiedown and knot security characteristics.
The bio
Azpuru Carlos A.
United States Surgical Corporation
LandOfFree
Bioabsorbable blends and coating composition containing same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bioabsorbable blends and coating composition containing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioabsorbable blends and coating composition containing same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2499103