Bio-electric sensor and switch system for medical imaging

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06829499

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention (Technical Field)
The present invention relates to the field of charge and ion sensors and interactive switches, with the capability to be dynamically, real-time triggered by the proximity of biological entities or by the motion of charges and ions. This invention focuses on its applications in medical imaging. It also involves the relation between field (charge) intensity and the distance between the source and device, which can be calibrated by considering the distance at which the device turns completely on or off.
2. Background Art
It is appropriate to mention some related prior art: Huang and Kunzler in U.S. Pat. No. 5,575,557, issued November 1996 discuss a Motion sensor light apparatus in which a motion sensor light apparatus comprises a lighting body, a mounting base for mounting the lighting body to a wall. The base body has an azimuthal aperture and installs therein a lens, a seat, and a motion sensor circuit board mounted on the seat. The seat has an azimuthal seat aperture superimposing to the aperture of the base body. A lens is adhered to the seat and positioned between the seat aperture and the aperture of the base body, and directs infrared radiation from a human or vehicle object to an infra-red sensor of the motion sensor circuit board. Based on the above description it can be observed that this device uses a concept different than the one used in the present invention in the sense that its sensing device is an infrared sensor, which is triggered through a lens.
Branson in U.S. Pat. No. 5,993,397, issued November 1996 discusses an infant respiratory monitor for alerting the supervisors of an infant when there is a lack of movement of the infant due to respiratory problems. The device comprises a housing having an attachment for clip for securing the housing to an infant. Respiratory monitoring circuitry is contained within the housing, and comprises a power source, which is in circuit with a motion sensor, processor and audio output means. The motion sensor detects movement, and transmits the presence of such movement to the processor. Because this device uses an infrared motion sensor, it cannot offer real-time switching on/off, which makes it different than the concept applied in the present invention.
Zangrando in U.S. Pat. No. 4,112,267, issued September 1978 discusses a coded switching device having a plurality of actuator dial knobs will, n set to a predetermined combination, provide electrical continuity between terminals on the device. Setting the dial knobs to another predetermined combination will enable the combination to be changed. The device consists of a number of stations, each comprising an actuator, a switch, and a detent mechanism, equal to the number of digits desired in the combination. Compared with the present invention, the one described above involves a mechanical switching assembly. This makes it different than the present invention, which uses an electronic switching system that is biologically and ionic triggered.
Somner and Harvey in U.S. Pat. No. 5,819,124, issued October 1998 discuss a security system that includes a camera connected to a motion sensor for detecting motion in the vicinity of the camera. The system has a stand-by state in which the motion sensor is active and a ready state wherein triggering of the motion sensor again causes the camera to capture an image. Since this security system uses infrared motion detectors, it is different than the one of the current invention.
Kramer in U.S. Pat. No. 5,998,780, issued December 1999 discusses an algorithm and circuits for sensing a moving optical stimulus. Three sequentially produced electrical signals at different locations in response to a moving stimulus are used to generate a monotonic function of velocity which is substantially insensitive to the global illumination level and stimulus contrast. This device differs from the one of the present invention in the sense that the latest one uses a set of switches that is biologically and ionic triggered.
Junkert and Voznick in U.S. Pat. No. 4,456,390, issued June 1984 discuss a portable, battery operated noncontact temperature measuring device including a lens for collecting infrared radiation and a thermopile for producing a signal indicative of the intensity thereof. This is mainly a thermal-optical device and therefore it is different than the one proposed in the current invention.
Naka and Watanabe in U.S. Pat. No. 5,225,695, issued July 1993 discuss a solid-state imaging device provided with a CCD-structured branching unit. This selects one signal charge sensor having characteristics suitable for the conditions of use from among a plurality of signal charge sensors each having different characteristics and forms a signal charge transmission path leading from the horizontal CCD to the selected signal charge sensor. This device differs from the current invention in the sense that it detects only a limited range on charge characteristics, while the current invention covers a broader range and visualization is done directly, with no additional processing.
Pelgrom in EP patent 155023, issued September 1985 discusses a charge sensor, more particularly for a charge transfer device, comprising two cross-coupled MOS transistors, two load MOS transistors, a positive and a negative current supply, and other two MOS transistors. The circuit arrangement is suitable for reading information in a CCD storage, in which the digital information can be applied to one input gate and a reference level halfway between the 0 level and the 1 level can be applied to the other input gate. Even if this circuit is a charge sensor, it differs from the current invention since it involves a different concept and a completely different electronic configuration.
Toolan in U.S. Pat. No. 4,386,834, issued July 1983 discusses a battery-powered corona discharge photography device for holding a photographic recording medium adjacent an electrode, with a specimen in contact with the recording medium. The Kirlian photography senses and visualizes a biological field, which is comparable with the one sensed by the current invention. However, the sensing principle is completely different and the range of sensing differs considerably, since the invented device has an adjustable sensing range.
Mandel in U.S. Pat. No. 4,222,658, issued September 1980 discusses a device for use in connection with Kirlian photography. This includes a seat insulated with regard to a support for the seat, a foot rest insulated relative to a support therefor, a bottom electrode arranged in spaced relationship to and ahead of the foot rest and insulated with regard to a support for the foot rest. The device, furthermore, comprises a plate arranged above the bottom electrode and insulated with regard to the bottom electrode and the support the plate electrode, the bottom electrode and the plate electrode being respectively connected to the poles of a high frequency generator. This device differs from the invented one in the sense of the concept of sensing and through it complexity of materials used.
Hirschowitz and Li in U.S. Pat. No. 4,328,809, issued May 1982 discuss a device and method for detecting the potential level of the electromagnetic field present between a reference point and a test point of a living organism. A reference electrode provides a first signal indicative of the potential level of the electromagnetic field at the reference point. A test electrode provides a second signal indicative of the potential level of the electromagnetic field at the test point. This device differs from the invented one in the sense that it involves electrodes, which represents practically a completely different method.
Everett and Schlenz in U.S. Pat. No. 3,568,662, issued March 1971 discuss a method and apparatus for sensing bioelectric potentials utilizing a passive, capacitive coupling to the body and establishment by such capacitive coupling of an electrical signal representative of the body potential at the site of such capacitive couplin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bio-electric sensor and switch system for medical imaging does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bio-electric sensor and switch system for medical imaging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bio-electric sensor and switch system for medical imaging will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3298490

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.