Bio-barcodes based on oligonucleotide-modified particles

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300

Reexamination Certificate

active

07323309

ABSTRACT:
The present invention relates to a screening methods, compositions, and kits for detecting for the presence or absence of one or more target analytes, e.g. proteins such as antibodies, in a sample. In particular, the present invention relates to a method that utilizes reporter oligonucleotides as biochemical barcodes for detecting multiple protein structures or other target analytes in one solution.

REFERENCES:
patent: 4193983 (1980-03-01), Ullman et al.
patent: 4256834 (1981-03-01), Zuk et al.
patent: 4261968 (1981-04-01), Ullman et al.
patent: 4313734 (1982-02-01), Leuvering
patent: 4318707 (1982-03-01), Litman et al.
patent: 4650770 (1987-03-01), Liu et al.
patent: 4713348 (1987-12-01), Ullman
patent: 4853335 (1989-08-01), Olsen et al.
patent: 4868104 (1989-09-01), Kura et al.
patent: 4996143 (1991-02-01), Heller et al.
patent: 5225064 (1993-07-01), Henkens et al.
patent: 5284748 (1994-02-01), Mroczkowski et al.
patent: 5288609 (1994-02-01), Engelhardt et al.
patent: 5294369 (1994-03-01), Shigekawa et al.
patent: 5360895 (1994-11-01), Hainfield et al.
patent: 5384073 (1995-01-01), Shigekawa et al.
patent: 5384265 (1995-01-01), Kidwell et al.
patent: 5460831 (1995-10-01), Kossovsky et al.
patent: 5472881 (1995-12-01), Beebe et al.
patent: 5508164 (1996-04-01), Kausch et al.
patent: 5514602 (1996-05-01), Brooks, Jr. et al.
patent: 5521289 (1996-05-01), Hainfeld et al.
patent: 5543158 (1996-08-01), Gref et al.
patent: 5571726 (1996-11-01), Brooks, Jr. et al.
patent: 5599668 (1997-02-01), Stimpson et al.
patent: 5609907 (1997-03-01), Natan
patent: 5637508 (1997-06-01), Kidwell et al.
patent: 5665582 (1997-09-01), Kaushch et al.
patent: 5681943 (1997-10-01), Letsinger et al.
patent: 5751018 (1998-05-01), Alivisatos et al.
patent: 5830986 (1998-11-01), Merrill et al.
patent: 5900481 (1999-05-01), Lough et al.
patent: 5922537 (1999-07-01), Ewart et al.
patent: 5939021 (1999-08-01), Hansen et al.
patent: 5972615 (1999-10-01), An et al.
patent: 5990479 (1999-11-01), Weiss et al.
patent: 6025202 (2000-02-01), Natan
patent: 6149868 (2000-11-01), Natan et al.
patent: 6203989 (2001-03-01), Goldberg et al.
patent: 6214560 (2001-04-01), Yguerabide et al.
patent: 6251303 (2001-06-01), Bawendi et al.
patent: 6264825 (2001-07-01), Blackburn et al.
patent: 6277489 (2001-08-01), Abbott et al.
patent: 6306610 (2001-10-01), Bawendi et al.
patent: 6361944 (2002-03-01), Mirkin et al.
patent: 6365418 (2002-04-01), Wagner et al.
patent: 6417340 (2002-07-01), Mirkin et al.
patent: 0 630 974 (1994-06-01), None
patent: 0 667 398 (1995-08-01), None
patent: WO 89/06801 (1989-07-01), None
patent: WO 90/02205 (1990-03-01), None
patent: WO 92/04469 (1992-03-01), None
patent: WO 93/10564 (1993-05-01), None
patent: WO 93/25709 (1993-12-01), None
patent: WO 94/29484 (1994-12-01), None
patent: WO 97/40181 (1997-10-01), None
patent: WO 98/04740 (1998-02-01), None
patent: WO 98/10289 (1998-03-01), None
patent: WO 98/17317 (1998-04-01), None
patent: WO 99/23258 (1998-10-01), None
patent: WO 99/20789 (1999-04-01), None
patent: WO 99/21934 (1999-05-01), None
patent: WO 99/23258 (1999-05-01), None
patent: WO 99/60169 (1999-11-01), None
patent: WO 00/25136 (2000-05-01), None
patent: WO 01/00876 (2001-01-01), None
patent: WO 01/51665 (2001-07-01), None
patent: WO 01/72123 (2001-10-01), None
patent: WO 01/86301 (2001-11-01), None
patent: WO 02/04681 (2002-01-01), None
patent: WO 02/18643 (2002-03-01), None
patent: WO 02/36169 (2002-05-01), None
patent: WO 00/33079 (2002-06-01), None
patent: WO 02/46472 (2002-06-01), None
patent: WO 02/46483 (2002-06-01), None
Stimpson, et al., “Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides,”Proc. Natl. Acad. Sci.., vol. 92, pp. 6379-6383, California Instiute of Technology (1995) U.S.
Storhoff, et al., “Strategies for Organizing Nanoparticles into Aggregate Structures and Functional Materials,”Journal of Cluster Science, vol. 8, No. 3, pp. 179-217, Plenum Publishing Corporation (1997) U.S.
Storhoff, et al., “One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes,”J. Am Chem. Soc., vol. 20, pp. 1961-1964, American Chemical Society (1998) U.S.
Velev, et al., “In Situ Assembly of Colloidal Particles into Miniaturized Biosensors,”Langmuir, vol. 15, No. 11, pp. 3693-3698, American Chemical Society (1999) U.S.
Zhu, et al., “The First Raman Spectrum of an Organic Monolayer on a High-Temperature Superconductor: Direct Spectroscopic Evidence for a Chemical Interaction between an Amine and Yba2Cu3O7-8,”J. Am. chem. Soc., vol. 119, pp. 235-236, American Chemical Society (1997) U.S.
Yguerabide, et al., “Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications,” I. Theory,Analytical Biochemistry, vol. 262, pp. 137-156 (1998) U.S.
Yguerabide, et al., “Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications,” II. Experimental Characterization,Analytical Biochemisty, vol. 262, pp. 157-176 (1998) U.S.
Brada, et al., “Golden Blot”—Detection of Polyclonal and Monoclonal Antibodies Bound to Antigens on Nitrocellulose by Protein A-Gold Complexes,Analytical Biochemistry, vol. 42, pp. 79-83 (1984) U.S.
Dunn, et al., A Novel Method to Map Transcripts: Evidence for homology between an Adenovirus mRNA and Discrete Multiple Regions of the Viral Genome,Cell, vol. 12, pp. 23-36, (1997) U.S.
Hacker, High performance—Nanogold—Silver in situ hybridisation,Eur. J. Histochem, vol. 42, pp. 111-120 (1998) U.S.
Ranki, et al., “Sandwich hybridization as a convenient method for the detection of nucleic acids in crude samples,”Gene, vol. 21, pp. 77-85 (1983) U.S.
Romano, et al., “An antiglobulin reagent labelled with colloidal gold for use in electron microscopy,”Immunochemistry, vol. 11, pp. 521-522 (1974) Great Britain.
O.D. Velev, et al., “In Situ Assembly of Collordal Particles into MIniaturized Biosensors,”Langmuir, vol. 15, No. 11, pp. 3693-3698, May 25, 1999.
Borman,Chem.Eng. News, Dec. 8, 1996, pp. 42-43 (1996).
Tomlinson et al.,Anal. Biochem, vol. 171, pp. 217-222 (1998).
Alivisatos et al., “Organization of ‘nanocrystal molecules’ using DNA,”Nature, vol. 382, pp. 609-611 (1996).
Bain, et al., “Modeling Oragnic Surfaces with Self-Assembled Monolayers,”Angew. Chem. Int. Ed. Engl., vol. 28, pp. 506-512 (1989).
Bradley, “The Chemistry of Transition Metal Colloids,”Clusters and Colloids: From Theory to Applications, G. Schmid, Editor BCH, Weinheim, New York, pp. 459-542 (1994).
Brust et al., “Novel Gold-Dithiol Nano-Networks with Non-Metallic Electronic Properties,”Adv. Mater., vol. 7, pp. 795-797 (1995).
Chen et al., “A Specific Quandrilateral Synthesized from DNA Branched Junctions,”J. Am. Chem. Soc., vol. 111, pp. 6402-6407 (1989).
Chen & Seeman, “Synthesis from DNA of a molecule with a connectivity of a cube,”Nature, vol. 350 pp. 631-633 (1991).
Chen et al., Crystal Structure of a Four-Stranded Intercalated DNA: d(C4)†‡Biochem., vol. 33, pp. 13540-13546 (1994).
Dagani, “Supramolecular Assemblies DNA to organize gold nanoparticles,”Chemical&Engineering News, p. 6-7, Aug. 19, 1996.
Dubois & Nuzzo, “Synthesis, Structure, and Properties of Model Organic Surfaces,”Annu. Rev. Phys. Chem., vol. 43, pp. 437-464 (1992).
Elghanian et al., “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,”Science, vol. 277, pp. 1078-1081 (1997).
Grabar et al., “Prepartion and Characterization of Au Colloid Monolayers,”Anal. Chem. vol. 67, pp. 735-743 (1995).
Hacia et al.,“Detection of heterozygous mutations in BRCA1 usi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bio-barcodes based on oligonucleotide-modified particles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bio-barcodes based on oligonucleotide-modified particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bio-barcodes based on oligonucleotide-modified particles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2806976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.