Binding assays that use human T1R2 to identify potential...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007210, C436S501000

Reexamination Certificate

active

07435552

ABSTRACT:
Binding assays for identifying compounds that modulate human T1R2 polypeptide associated taste are disclosed. These assays detect the specific binding of compounds to a human T1R2 polypeptide or the modulation of the specific binding of a compound that specifically binds to a human T1R2 polypeptide. The binding assays may include the use of detectable labels, e.g., radionuclides, enxymes, fluorophases, and the like. Compounds identified in these binding assays have putative application as T1R2 taste modulators, particularly sweet taste, and potentially are useful additives in compositions for human or animal consumption.

REFERENCES:
patent: 5993778 (1999-11-01), Firestein et al.
patent: 6383778 (2002-05-01), Zuker et al.
patent: 6540978 (2003-04-01), Margolskee et al.
patent: 2002/0051997 (2002-05-01), Zuker et al.
patent: 2002/0094551 (2002-07-01), Adler et al.
patent: 2002/0151052 (2002-10-01), Chaudhari et al.
patent: 2002/0160424 (2002-10-01), Adler et al.
patent: 2002/0168635 (2002-11-01), Zuker et al.
patent: 2003/0008344 (2003-01-01), Adler et al.
patent: 2003/0022278 (2003-01-01), Zuker et al.
patent: 2003/0022288 (2003-01-01), Zuker et al.
patent: 2003/0036089 (2003-02-01), Wei et al.
patent: 2003/0040045 (2003-02-01), Zuker et al.
patent: 2003/0054448 (2003-03-01), Adler et al.
patent: 2003/0166137 (2003-09-01), Zuker et al.
patent: 2005/0106571 (2005-05-01), Erlenbach et al.
patent: 2007/0105159 (2007-05-01), Erlenbach et al.
patent: WO 00/06592 (2000-02-01), None
patent: WO 00/06593 (2000-02-01), None
patent: WO 01/64882 (2001-09-01), None
patent: WO 01/66563 (2001-09-01), None
patent: WO 01/83749 (2001-11-01), None
patent: WO 03/025137 (2002-03-01), None
patent: WO 02/064631 (2002-08-01), None
patent: WO 03/001876 (2003-01-01), None
patent: WO 2005/015158 (2005-02-01), None
Hoon et al., Cell 96(541-551)1999.
Alexander et al., Proc. Natl. Acad. Sci. 89(3352-3356)1992.
Bowie et al., 1990, Science 247:1306-1310.
Guo-HH et al. PNAS 101(25)9205-9210, 2004.
Temussi-P et al., J. Mol. Recognition 19(188-199)2006.
Xiadong Li, et al., “Human Receptors for Sweet and umami taste”, Proceeding of the National Academy of Science, vol. 99, No. 7, p. 4692-4696, Apr. 2, 2002.
Database EMBL ′Online!, embl heidelberg; Acc#: Ac062024, Jun. 21, 2000.
E. Adler, et al., “A Novel Family of Mammalian Taste Receptors”, Cell, vol. 100, No. 6, p. 693-702, Mar. 17, 2000.
Guo, et al., “Protein Tolerance to Random Amino Acid change”, PNAS, vol. 101, No. 25, p. 9205-9210, Jun. 22, 2004.
Nelson, et al., “Mammalian Sweet Taste Receptors”, Cell, vol. 106, p. 381-390, Aug. 10, 2001.
Nelson,et al., “An Amino-acid Taste Receptor”, Nature, vol. 416, p. 199-202, Mar. 14, 2002.
Alexander, et al., “Altering the Antigenicity of proteins”, Proc. Natl. Acad. Sci. USA, vol. 89, p. 3352-3356, Apr. 1992.
Bowie, et al., “Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitions”, Science, vol. 247, p. 13061310, Mar. 16, 1990.
Krautwurst, et al., “Identification of Ligands for Olfactory Receptors by Functional Expression of a Receptor Library”, Cell, vol. 95, p. 917-926, Dec. 23, 1998.
GenBank Accession No. AL139287, clone RP5-89003, Feb. 13, 2000.
GenBank Accession No. AA907022, May 19, 1998.
Hoon, et al., “Putative Mammalian Taste Receptors: A Class of Taste-Specific GPCRs with Distinct Topographic Selectivity”, Cell, vol. 96, p. 541-551, Feb. 19, 1999.
Lindemann, “A Taste for Umami”, Nature Neuroscience, vol. 3, No. 2, p. 99-100, Feb. 2000.
Perruccio, et al., “Possible Role for gustducin in Taste Transduction in Hirudo Medicinalis”, Society for Neuroscience Abstracts, vol. 26, No. 1-2, Abstract No. 66.15, 2000.
Wolfgang Bönigk, et al., “The Native Rate Olfactory Cyclic Nucleotide-Gated Channel is Composed of Three Distinct Subunits”, The Journal of Neuroscience, vol. 19, No. 136, p. 5332-5347, Jul. 1, 1999.
Sue C. Kinnamon and Thomas A. Cummings, “Chemosensory Transduction Mechanisms in Taste”, Annu. Rev. Physoil., vol. 54, p. 715-731, 1992.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Binding assays that use human T1R2 to identify potential... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Binding assays that use human T1R2 to identify potential..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Binding assays that use human T1R2 to identify potential... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4017724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.