Binder device releasably engaging aperture or notch of sheet – Depository
Reexamination Certificate
2003-04-02
2004-07-13
Carter, Monica S. (Department: 3722)
Binder device releasably engaging aperture or notch of sheet
Depository
C281S015100, C402S08000L, CD19S026000
Reexamination Certificate
active
06761498
ABSTRACT:
RELATED APPLICATIONS
None
FIELD OF THE INVENTION
The present invention relates to binder construction. More particularly, the present invention relates to a construction of a binder such as a ring binder in which the spine label has been modified to allow easy insertion of a spine label.
BACKGROUND OF THE INVENTION
Binders such as ring binders are commonly fabricated in a three-ply construction. In this construction, three rigid or semirigid rectangular inserts or stiffener panels are heat-sealed between two sheets of cover material. Of the three stiffener panels generally used, two of them approximate in size the back and front panels of the binder. The third panel is a narrower insert strip disposed between the two larger panels to form the spine panel of the binder. The inner and outer plastic sheets are fused together or heat-sealed around their peripheral edges. The sheets are also sealed transversely between the adjacent, transverse edges of the cover panel inserts and the spine panel inserts. The transverse seals form the hinge areas of the binder. U.S. Pat. No. 3,195,924 is typical of this type of binder construction.
The stiffener panels are typically made of relatively thick, relatively rigid material, such as cardboard, fiberboard or corrugated paper, which is commonly referred to as chipboard. The chipboard may be made of solid chipboard material or may be of a laminate construction such as disclosed in U.S. Pat. No. 4,931,346. The inner cover and the outer cover may be made of a thin sheet of any fabric, paper or plastic material, but most commonly are made of a thermoplastic material, such as polyvinyl chloride (PVC) or polypropylene, that is readily joined at the edges of the inner and outer covers along the periphery of the substrate by heat welding, or by electronic welding, such as ultrasonic or radio frequency (RF) welding. The above type of ring binder—frequently referred to in the art as a “plastic binder” —is typically made as follows: First, a pair of matching sheets of opaque thermoplastic material, typically PVC, are positioned on opposite sides of one or more stiffening members arranged to define a front cover panel, a spine panel and a rear cover panel. Next, the sheets are welded together, typically by RF welding, around their respective peripheries. In addition, the sheets are also typically RF welded together along a pair of hinge lines on opposite sides of the spine panel. Finally, a paper-retaining ring mechanism, typically a 3-ring mechanism that either snaps open and closed via a spring loaded mechanism, or which opens and closes via a locking mechanism, is attached to either the spine or to one of the covers. Looseleaf ring binder covers in accordance with the above description are shown for example in U.S. Pat. Nos. 4,600,346 and 5,785,445, which are hereby incorporated by reference for their teachings of binder construction.
The binder can also have a clear or transparent cover such as a plastic cover over the outside to hold and protect front and/or rear cover labels and a spine label. In this construction, the clear sheet covers most of the outside of the binder. The clear sheet is sealed to the opaque PVC sheets at its vertical edges and its bottom edge, and is sealed to the hinges, typically by the same sealing technique as is used to seal the opaque sheets together, and typically at the same time. The space between the clear sheet and the opaque PVC sheets thus forms typically three pockets: a front pocket at the front of the binder, a rear pocket at the rear of the binder, and a spine pocket at the spine of the binder. A full size sheet of printed paper such as a report cover can be inserted into the front pocket; a spine-sized piece of paper can be inserted into the spine pocket for labeling the spine; and a full size sheet of printed paper or back cover can be inserted into the rear pocket, thus giving the binder a professional appearance and allowing the user to quickly determine the contents of the binder whether the binder is laying flat and closed on a desk or is placed upright on a bookshelf with only the spine and its label facing outward. Binders of this construction are sometimes called window binders or view binders. An example of such a view binder is shown in
FIGS. 1 and 2
.
It can be difficult to label the spines of view binders. The clear,or transparent overlay underneath which the user is expected to slide a spine label typically clings somewhat tightly to the binder spine making insertion difficult, especially insertion of lightweight paper stock. Especially with spine labels made from lightweight paper stock, users sometimes resort to opening the binder and laying it flat on a surface such as a table in order to relieve sufficient pressure at the clear cover over the spine in order to allow insertion of the spine label into the spine window. Laying the binder flat is particularly difficult when the binder is full. Also, removing the label from the spine window in order to re-label the binder spine can be very difficult because of the tight fit of the label into the spine window and the friction created thereby.
SUMMARY OF THE INVENTION
The present invention seeks to facilitate the process of binder spine identification by making the process of inserting and removing a spine label into a view binder easier. By creating a relief or void in the spine board the friction is reduced, thus allowing for an easier insertion of the paper or card stock insert.
The invention is of an improved binder which has been modified to create a depression therein such that the spine label can be more easily inserted into the spine window. The depression in the spine allows the opaque flexible sheet covering the spine to depress inwardly, thereby giving additional room for the spine label and decreasing the insertion force of the spine label into the spine window.
In one embodiment, the spine panel is a generally flat sheet but has raised rails along the lengthwise edges of the spine panel. In another embodiment, the spine panel has raised rails along three or all four sides. In yet another embodiment, the spine is stamped so as to create raised rails or creases near the lengthwise edges. In yet further embodiments, the spine panel has a curved or angled cross-section. In one aspect therefore, the invention is of a binder having a spine construction for easy insertion of a spine label, the binder including a front panel and a rear panel; a spine panel, an outer surface of the spine panel having a first raised portion, a second raised portion, and a relatively lower inner portion located between the first and second raised portions; at least one flexible opaque sheet covering the first and second raised portions and the lower inner portion; a flexible transparent or translucent sheet disposed over at least a portion of the spine panel and at least a portion of the opaque sheet, the transparent sheet and the opaque sheet together defining a spine pocket; wherein the lower inner portion of the spine panel allows a portion of the opaque sheet to deflect inward toward the interior portion and away from the transparent sheet, thereby reducing the amount of force necessary to slide a spine label into the spine pocket. The opaque sheet may be a pigmented vinyl sheet and the transparent sheet may be a transparent plastic sheet, which are all sealed together such as by heat, sealing, RF welding, ultrasonic welding, or other techniques, along the lines between the spine panel and the front panel, and between the spine panel and the rear panel, thus forming two plastic flexible hinges for the binder. The spine may be shaped in any one of a number of ways to produce the relatively raised portions and the relatively depressed portion, including by molding, routing, or stamping. A typical application for the invention would be for use in a ring binder such as a three ring binder although the invention could be used in other applications as well. The spine panel and front and cover panels could be chipboard such as is commonly used in three ring binders
Harris, Jr. Charles K.
Harrison Jack B.
Joyner Richard K.
King Brian
Avery Dennison Corporation
Carter Monica S.
Fulwider Patton Lee & Utecht LLP
Voelzke Joel D.
LandOfFree
Binder construction for easy insertion and removal of spine... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Binder construction for easy insertion and removal of spine..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Binder construction for easy insertion and removal of spine... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3254281