Bimetallic tube in a heat exchanger of an ice making machine

Refrigeration – Processes – Congealing flowable material – e.g. – ice making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S354000, C165S094000

Reexamination Certificate

active

06477846

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to heat exchanger tubes for heat exchangers used in chilling fluids or making ice. Specifically, the invention relates to an improvement in the heat exchangers where a bimetallic heat exchanger tube is used to increase the capacity of the heat exchanger and lower the rate of wear of other parts within the heat exchanger.
(2) Description of the Related Art
Heat exchangers for making a chilled fluid or water-ice mixture are well known in the art. These heat exchangers are used in a variety of industries including the food processing industry where a slurry ice mixture is used to refrigerate meats, produce, and fish. The heat exchangers are also used in the processing of milk products and concentrated fruit juices, and in HVAC and brewing applications. In these heat exchangers, the ice water mixture is pumped through heat exchanger tubes and refrigerant is circulated around the tubes. The fluid mixture is chilled as it passes through the heat exchanger tubes, and the chilled mixture is pooled in a reservoir where it may be accumulated for further processing, as required. In order to prevent ice from forming in the tube and adhering to the tube, mechanical agitators are used to maintain the flow of the chilled mixture-through the heat exchanger.
One machine that has gained wide use in the food processing industry is a whip rod heat exchanger. A typical whip rod heat exchanger has vertical heat transfer tubes with whip rods positioned in the heat transfer tubes. Feed or process solution is directed into the tubes. A drive mechanism in the heat exchanger develops relative motion between the tubes and the whip rods to distribute the feed solution evenly within the tube, thus more effectively freezing or chilling the feed solution. An orbital tube evaporator system is described in U.S. Pat. No. 5,221,439, issued Jun. 22, 1993, and entitled Orbital Tube Evaporator With Improved Heat Transfer. An improvement to that apparatus is described in U.S. Pat. No. 5,385,645, issued Jan. 31, 1995, and entitled Heat Transfer Apparatus with Positive Drive Orbital Whip Rod, the disclosures of which are incorporated herein by reference. In the orbital whip rod system described in the '645 patent, the feed solution is pumped through the vertical tubes and chilled by the refrigerant circulating in the chamber surrounding the vertical heat exchanger tubes. The whip rod moves in an orbital direction inside a stationary heat exchanger tube so that the fluid is distributed as a film on the inner diameter surface of the tube. The whip rod creates a turbulent flow liquid layer that prevents the feed solution from sticking to the inner wall of the tube as it is chilled and moves from the top of the heat exchanger to the bottom of the heat exchanger. The refrigerant is circulated around the outside of the heat transfer tube to remove heat from the feed solution to chill the feed solution. The chilled feed solution may then be directed from the bottom of the vertical tubes to a storage tank where it may be pumped away or otherwise utilized as required by the application.
An improvement to the orbital whip rod heat exchanger is described in U.S. Pat. No. 5,953,924, issued Sep. 21, 1999, and entitled Apparatus, Process and System for Tube and hip Rod Heat Exchanger, the disclosure-of which is incorporated herein by reference. The '924 patent describes an invention where the orbital whip rod heat exchanger may be configured to operate in a flooded tube mode where the heat exchanger tubes are flooded with process fluid and the whip rod is driven from both ends of the heat exchanger tube, and a falling film mode, where the heat exchanger tube is partially filled with process fluid and the whip rod is suspended in the tube and driven from a drive plate above the tube.
Another style of heat exchanger for producing an ice-slurry mixture found in wide spread use in the food processing industry is a heat exchanger with flooded refrigerated tubes having a rotating blade inside the tube. These heat exchangers are described in U.S. Pat. No. 5,884,501 issued Mar. 23, 1999, and U.S. Pat. No. 6,056,046, issued May 2, 2000, the disclosures of which are hereby incorporated by reference. The ice slurry mixture is formed in a central tube in a heat exchanger housing and is moved from an inlet to an outlet in the central tube by a rotating blade. Refrigerant is circulated in refrigerant tubes formed around the outer. periphery of the heat exchanger housing. The rotating blades move past the inner wall of the central tube of the heat exchanger without contacting it and thereby move cooled fluid from the surface to prevent the deposition of ice crystals on the inner wall of the heat exchanger.
In these conventional heat exchangers, including the orbital whip rod heat exchanger, the tubes are generally made from stainless steel since stainless steel is both corrosion resistant to the feed solution being pumped through the inner wall surfaces of the tube and the refrigerant which circulates around the outer wall surfaces of the heat exchanger tube. Stainless steel also has good thermal conductivity and good strength. In stainless steel tube heat exchangers, HCFC and ammonia may be used as refrigerants in a variety of applications where the chilled feed solutions may include seawater and food products. Copper has also been used for constructing the heat exchanger tubes; however, copper is generally not compatible with ammonia based refrigerant systems. In industries where there is a higher concern for safety, HCFC refrigerants continue to be used. On the other hand, in process cooling applications, ammonia based refrigerants are well suited because of their low cost and high efficiency. As stainless steel tubes can be used in both the systems, stainless steel heat exchanger tube systems are common.
However, stainless steel heat exchanger tube systems have many disadvantages. Stainless steel tube heat exchangers are generally more expensive when compared to copper tube heat exchangers. In the construction of copper tube or stainless steel tube heat exchangers, the tubes are generally roll fastened to the tube sheet. The tube to tube sheet connection must be a leak tight boundary to prevent the refrigerant from leaking out of the heat exchanger unit and into the feed solution and possibly the surrounding workspaces. Since ammonia is toxic, in some applications that use ammonia as a refrigerant, the stainless steel tube must be welded to the tube sheet in addition to being roll fastened to ensure the required leak tight boundary for the application. Since copper tube exchangers do not use ammonia, the tube to tube sheet connection need only be roll fastened, thus lowering manufacturing cost. Stainless steel also generally has a higher material cost than copper.
In these types of heat exchangers, seamless stainless steel tube is preferred. A welded tube may also be used if the weld bead is flattened to provide a smooth transition over the seam. In the orbital rod heat exchanger, the smooth inner surface of the tube allows the whip rod to travel along the inner surface without “bumping” or jumping over the seam. The consistent motion of the whip rod creates the turbulent flow layer needed to prevent ice formation in the tube. In the blade type heat exchanger, the smooth surface is required so that the small radial clearance between the blades and the inner surface of the tube is maintained for fluid flow along the inner surface of the tube. A more costly seamless tube or the secondary operation of flattening the weld bead is an added expense. Since copper tubes are usually drawn without a seam when manufactured, they are generally less expensive than seamless stainless steel tubing.
Stainless steel heat exchanger tubes also have other drawbacks when compared to conventional copper-based systems. In order to depress the freezing point of solution as it is processed and promote the formation of ice slurry, additives such as ethylene glycol, propylen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bimetallic tube in a heat exchanger of an ice making machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bimetallic tube in a heat exchanger of an ice making machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bimetallic tube in a heat exchanger of an ice making machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2964095

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.