Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2000-11-16
2002-09-17
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S114000, C526S115000, C526S116000, C526S160000, C502S113000, C502S103000
Reexamination Certificate
active
06451933
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a catalyst for polymerizing olefins. The catalyst comprises an organometallic compound and optionally, an activator. The organometallic compound is a bimetallic complex comprising a Group 3-5 transition or lanthanide metal, a Group 6-10 transition metal, and a multidentate ligand.
BACKGROUND OF THE INVENTION
Many olefin polymerization catalysts are known, including conventional Ziegler-Natta catalysts. To improve polymer properties, highly active single-site catalysts, in particular metallocenes, are beginning to replace Ziegler-Natta catalysts. These catalysts have proved very useful in producing linear low density polyethylene (LLDPE) by the co-polymerization of ethylene with a co-monomer such as butene, hexene, or octene.
Because the co-monomer used to produce LLDPE is typically much more expensive than ethylene, it would be useful to develop a catalyst or process that is capable of producing LLDPE from ethylene without the use of a co-monomer. U.S. Pat. No. 5,753,785 discloses a metallocene catalyst that promotes simultaneous oligomerization of a fraction of ethylene to form a comonomer in situ and copolymerization of the remaining ethylene and the comonomer to produce a copolymer. However, only one of the disclosed metallocene catalysts was found to be effective in dimerization of ethylene followed by polymerization to give ethylene/butylene copolymers.
In sum, new catalysts are needed. Particularly valuable catalysts would be able to produce LLDPE resins from ethylene by oligomerizing ethylene and simultaneously polymerizing ethylene and the co-formed oligomer.
SUMMARY OF THE INVENTION
The invention is a catalyst for polymerizing olefins. The catalyst comprises an organometallic compound comprising a Group 3-5 transition or lanthanide metal, M
1
, a Group 6-10 transition metal, M
2
, and a multidentate ligand characterized by an anionic cyclopentadienyl group that is covalently linked to two Group 15 atoms, wherein the cyclopentadienyl group is &pgr;-bonded to M
1
and the two Group 15 atoms are coordinated to M
2
. The catalyst may optionally comprise an activator.
DETAILED DESCRIPTION OF THE INVENTION
Catalysts of the invention comprise an organometallic compound and optionally, an activator. The organometallic compound of the invention comprises a Group 3-5 transition or lanthanide metal, M
1
, a Group 6-10 transition metal, M
2
, and a multidentate ligand. The multidentate ligand is characterized by an anionic cyclopentadienyl group that is covalently linked to two Group 15 atoms, wherein the cyclopentadienyl group is &pgr;-bonded to M
1
and the two Group 15 atoms are coordinated to M
2
.
The multidentate ligand of the invention contains a cyclopentadienyl group. The cyclopentadienyl group can be any substituted or unsubstituted cyclopentadienyl. The cyclopentadienyl group can also be a part of a condensed ring system, such as a fluorenyl type ring system.
The multidentate ligand also contains two Group 15 atoms that are covalently linked to the cyclopentadienyl group. The two Group 15 atoms may be the same or different. Preferred Group 15 atoms include nitrogen and phosphorus. Nitrogen is particularly preferred. Depending upon the structure of the multidentate ligand, the Group 15 atoms may be bonded to other substituents. Preferred Group 15 atom substituents include C
1
-C
20
alkyl, C
6
-C
20
aryl and trialkyl silyl.
The cyclopentadienyl group is covalently linked to the two Group 15 atoms. The cyclopentadienyl and the two Group 15 atoms can be bonded directly to each other or linked through a bridging group. If linked through a bridging group, the bridging group contains at least one nonhydrogen atom. The two Group 15 atoms may form part of a ring system that also contains the cyclopentadienyl group, for example in substituted and unsubstituted diazafluorenyls ligands.
A preferred multidentate ligand has the formula:
where
A is N or P.
Another preferred multidentate ligand has the formula:
where
A is N or P, and X is selected from the group consisting of C
1-10
alkyl, C
6-20
aryl, or trialkyl silyl.
The multidentate ligands can be prepared by a variety of known synthetic procedures. See, for example, Kloc, et al.,
Heterocycles
(1978), Vol. 9, 849 for the synthesis of diazafluorenes; Broussier, et al.,
J. Organomet. Chem.
(2000), Vol. 598, 365 for the preparation of diphosphinocyclopentadienes; and Bartmann, et al.,
Angew. Chem. Int. Ed. Eng.
(1984), Vol. 23, 225 for the synthesis of triaminocyclopentadienes.
The organometallic compound of the invention also comprises a Group 3-5 transition or lanthanide metal, M
1
. M
1
is &pgr;-bonded to the cyclopentadienyl group of the multidentate ligand in an &eegr;
5
fashion. M
1
is preferably a Group 4 transition metal; most preferably, titanium or zirconium.
The Group 3-5 transition or lanthanide metal, M
1
, may also be associated with other ligands. Preferred ligands include halides, substituted or unsubstituted cyclopentadienyl, and C
1
-C
20
alkoxy, siloxy, hydrocarbyl, or dialkylamido ligands. Preferred ligands also include an additional multidentate ligand. Particularly preferred ligands are cyclopentadienyl, halides, and C
1
-C
20
hydrocarbyl or dialkylamido ligands. If the ligand is a C
1
-C
20
hydrocarbyl group, it is preferably a group that lacks a hydrogen atom on a carbon that is beta to M. Thus, preferred hydrocarbyl groups include methyl, benzyl, phenyl, neopentyl, or the like.
The organometallic compound of the invention also comprises a Group 6-10 transition, M
2
. M
2
is chelated by the two Group 15 atoms of the multidentate ligand. M
2
is preferably a Group 10 transition metal such as nickel, palladium, or platinum. The Group 6-10 transition metal, M
2
, may also be associated with other ligands. Preferred ligands include halides (e.g., chlorides, bromides), C
1
-C
20
alkyls, C
6
-C
20
aryls, amines, acetylacetonates, nitrates, sulfates, and carboxylates (e.g. acetate).
The organometallic compound is prepared by any suitable method. In one convenient method, the multidentate ligand is formed by reacting a multidentate precursor with one equivalent of a deprotonating base such as butyl lithium in an inert organic solvent. The multidentate precursor is characterized by a neutral cyclopentadiene group that is covalently linked to two Group 15 atoms. The deprotonated reaction product is then reacted with a Group 3-5 transition or lanthanide metal starting complex in an inert organic solvent to form an intermediate where M
1
is now &pgr;-bonded to the cyclopentadienyl ring of the multidentate ligand. The Group 3-5 transition or lanthanide metal starting complex includes a Group 3-5 transition or lanthanide metal that is covalently bound to at least one leaving group (such as a halide). The leaving group is any monoanionic species such as halide or amide. Stoichiometric quantities are typically used. The intermediate product is then reacted with a Group 6-10 transition metal starting complex to form the organometallic compound of the invention. The Group 6-10 transition metal complex includes any Group 6-10 transition metal that is coordinatively bound to at least one leaving group. The leaving group of the second complex is any neutral species capable of being disassociated by reaction with the intermediate. Typical leaving groups include cyclooctadiene, phosphines, amines, and the like. Stoichiometric quantities are typically used.
Alternatively, the organometallic compound is prepared by reacting the multidentate precursor compound with the Group 6-10 transition metal starting complex, followed by deprotonation, and reaction with the Group 3-15 transition or lanthanide metal complex. The organometallic compound is typically collected by filtration.
Suitable deprotonating bases include any base that is capable of deprotonating a cyclopentadiene precursor to form an anionic cyclopentadienyl compound. Preferred bases include alkyl lithiums, Grignard reagents, lithium dialkylamides, and metal hydrides. Particularly preferred bases include n
Carroll Kevin M.
Cheung William
Equistar Chemicals LP
LandOfFree
Bimetallic olefin polymerization catalysts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bimetallic olefin polymerization catalysts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bimetallic olefin polymerization catalysts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2859536