Bifurcated stent and distal protection system

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S191000

Reexamination Certificate

active

06258115

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an implarnable intraluminal device. More specifically, the present invention relates to an implantable intraluminal device which is particularly useful for repairing or serving as a conduit for vessels narrowed or occluded by disease or for use in other body passageways requiring reinforcement or the like. Further, devices are disclosed in the present invention that can trap particulate that is loosened during interventional procedures such as stent or stent-graft placement, angioplasty, atherectomy, etc.
2. Description of Background Art
Intraluminal devices or, more specifically, endovascular prostheses, are known for treating stenosis, stricture, aneurysm conditions and the like. Often these devices are implanted via LIS (Least Invasive Surgery); whereby a small percutaneous access into the vessel is accomplished (usually remote to the diseased area). Alternatively, they are installed via an ‘open surgery’ approach. Advantages of the LIS approach (over conventional surgery) are significant from a cost as well as a patient care and recovery point of view. Intraluminal scaffolding devices such as stents are often used in combination with grafts and vice versa. The graft is usually, but not always a textile/fabric type device that is used to cover a greater area of the scaffolding as well as aid in neo-intimal formation after placement. Further, the two (stents and grafts) are often designed into one device called a stent-graft.
Each year about half a million Americans suffer a stroke in which obstruction or hemorrhage impairs the crucial flow of blood to the brain. About 150,000 of these stroke victims die, making stroke the third leading cause of death after heart disease and cancer, and many more suffer permanent disability. According to the American Heart Association the cost of treating stroke exceeds $25 billion a year.
Currently, approximately 180,000 Americans undergo a preventative operation to clear carotid arteries that carry blood to the brain. The operation, known as Carotid Endarterectomy (surgical removal of plaque from the carotid artery), usually requires patients to stay in the hospital a few days, with typically a few weeks recovery time. This surgical procedure is increasing at an annual rate of greater than 20%.
A debate has arisen between vascular surgeons and “interventional” cardiologists and radiologists concerning the advantages of using of stents and/or stent-grafts to treat occluded carotid arteries compared with surgery. Stroke prevention operations/surgeries like endarterectomies are performed by vascular surgeons in the United States at a cost of about $1.5 billion per year. Efforts to use small stents in the brain to open and maintain patency in clogged arteries have triggered a fierce debate comparing the safety and efficacy of the medical techniques. Interventionalists claim that the scaffolding accomplished with stents is easier on the patient and the patient's pocketbook. Surgeons, on the other hand, are skeptical of stenting in the carotid because of the potential for neurological complications as well as the potential for the stent to ‘recoil’ (return to a smaller diameter than when originally placed) some time after initial placement.
Various strategies have been devised and developed for vascular intervention in the treatment of Chronic Occlusive Disease (COD). Much of the critical occlusive disease occurs at junctions (bifurcations) in the vasculature. Of particular interest are occluded carotid arteries and other bifurcated vasculature junctures.
A recent study funded by the NIH indicates the incidence of stroke can be reduced by 55% if the occluded carotid is treated by surgical intervention. This surgical procedure sometimes allow minute pieces of plaque or blood clot (emboli) to travel into the brain causing at least temporary neurological damage, and often stroke or permanent neurological defects.
Various devices have been devised and used to dispense thrombolytic agents to the occluded vasculature and/or physically disrupt and dislodge the occluding thrombus. One such catheter, described in U.S. Pat. Nos. 5,498,236, 5,380,273, and 5,713,848 by the present inventor was developed to penetrate and cross occluded portions within the vasculature, deploy an occlusion device distal to the occlusion to stop emboli from iatrogenic damage while clearing the occlusion/blockage. Although such catheters are adequate for removing occluding tissue in a vessel lumen, restenosis occurs unless balloon angioplasty or some sort of scaffolding is left in place to prop the vessel open (e.g. stent or stent-graft). Scaffolding is becoming a preferred treatment, usually with balloon angioplasty (or sometimes without) because balloon angioplasty when used without some type of scaffolding has a tendency to have a temporary result.
Femoral artery access allows the interventionalist an easy, safe and less costly approach to treat carotid stenosis with the least invasive trauma to the patient (other access is used as well). However, the need arises for a stent that can be deployed at a vascular “bifurcation” which does not occlude the side tributary (or side branch) at the bifurcation and still provide sufficient radial force to keep the vessel sufficiently open. In other words, a multi-porous or bifurcated stent or stent-graft that provides scaffolding at the vascular bifurcation and still allows blood to flow in the main vessel as well as into the bifurcated tributary is desirable.
The prior art regarding scaffolding or ‘propping open’ of closed or stenotic vessels is extensive. Stents or stent-grafts for scaffolding singular lumens (without bifurcations) are numerous. Stents in the past decade have been one of the most prominent technologies dealing with occlusive vascular disease. Additionally stents or stent-grafts for non-vascular occlusions such as urological, esophageal, biliary, etc. are prevalent as well. U.S. Pat. No. 5,383,925 by Schmitt et al describe a three dimensional braided soft tissue prostheses. In and of itself; this invention has similarities to the present invention because the present invention also discloses braided prostheses (as well as a non-braided prosthesis). However, Schmitt et al does not address the subject of tributaries and bifurcations. Similarly, U.S. Pat. No. 5,366,505 by Anderson et al describe a tubular medical prosthesis with knitted filaments with openings in between the filaments. This patent also does not address scaffolding of bifurcations. The stent or scaffolding intellectual property of this type that do not address stenting of bifurcations is extensive and will not be further addressed in this patent.
Conversely, endovascular support devices that address this scaffolding or stenting of bifurcations although much less common than the aforementioned non-bifurcated stents or stent-grafts are also prevalent in the market of stents as well in the patent theatre. For example U.S. Pat. No. 5,718,724 by Goicoechea et al describe a bifurcated endoluminal prosthesis and method of installing the device, whereby the stent is configured into a one or two part Y configuration. In an analogous U.S. Pat. No. 5,632,763 by Glastra et al; the bifurcated stent in this patent is also an Y shaped scaffold. In these and similar Y shaped/configured bifurcated stents, the stent is designed to be placed in the entire bifurcation or Y. This enables scaffolding of the entire junction of all three tributaries.
However, there are situations where only the main vessel of the tributary is required to be stented. Such appears to be the case of stenting the bifurcation of the carotid artery. Thousands of linear (as opposed to Y stents) stents have been placed without FDA approval in the U.S. in this bifurcated carotid area. In these cases, a stent is placed into the common carotid artery and further into the internal carotid artery. The stent is placed across the external carotid artery. These stents have walls with a very ‘open’ structure in that they a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bifurcated stent and distal protection system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bifurcated stent and distal protection system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bifurcated stent and distal protection system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527525

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.