Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2001-11-21
2003-06-03
Lambkin, Deborah C. (Department: 1626)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S456000, C514S470000, C549S355000, C549S404000, C549S467000
Reexamination Certificate
active
06573295
ABSTRACT:
FIELD OF THE INVENTION
This invention concerns a new class of compounds which have a broad range of useful biological and pharmacological activities. In particular, these compounds are useful for inhibiting intracellular signal transduction, especially intracellular signal transduction mediated by one or more molecular interactions involving a phosphotyrosine-containing protein. This invention also relates to pharmaceutical compositions containing the compounds and prophylactic and therapeutic methods involving pharmaceutical and veterinary administration of the compounds.
BACKGROUND OF THE INVENTION
Cellular signal transduction, i.e., the series of events leading from extracellular events to intracellular sequelae, is an aspect of cellular function in both normal and disease states. Numerous proteins that function as signal transducing molecules have been identified, including receptor and non-receptor tyrosine kinases, phosphatases and other molecules with enzymatic or regulatory activities. These molecules generally demonstrate the capacity to associate specifically with other proteins to form a signaling complex that can alter cell activity.
Signaling proteins often contain domain(s) of conserved sequence which constitute catalytic domains such as kinase or phosphatase domains, or serve as non-catalytic modules that direct protein:protein or other inter- or intramolecular interactions during signal transduction. Such domains include among others, Src homology 2 (“SH2”) and phosphotyrosine interaction (“PI”) domains. SH2 and PI domains recognize, i.e., bind to, proteins containing characteristic peptide sequences which include one or more phosphorylated tyrosine (“pTyr”) residues. Significant information related to such domains, proteins containing them, the production of proteins containing such domains (including protein fragments and fusion proteins), the characteristic peptide sequences which they recognize and the biological and/or clinical role played by the interactions of such proteins has been described in the scientific literature. See e.g. U.S. Pat. No. 5,667,980, PCT/US97/02635 (“Cell-Based Assay”) and WO 97/39326 (“In Vitro Fluorescence Polarization Assay”) and references cited therein for additional background information on SH2 and PI domains, inhibition of intermolecular interactions mediated by such domains, assays and related topics.
The protein domains of the tyrosine kinase, Src, gave rise to the “Src homology” (“SH”) nomenclature and illustrate this class of proteins. At least nine members of the Src family of tyrosine kinases have been identified to date in vertebrates including Src (alternatively known as c-src and pp6oc-src), Fyn, Yes, Lyn, Hck, Fgr, Blk and Yrk.
Sequence analysis of the Src tyrosine kinases reveals that each family member contains an N-terminal membrane anchor, a poorly conserved “unique” region of 40-70 amino acids, a Src homology 3 (SH3) domain of about sixty amino acids capable of protein—protein interactions with proline-rich sequences and a Src homology 2 (SH2) domain comprising about 100 amino acid residues which mediates binding of the Src family member of phosphotyrosine-(pTyr) containing peptides and proteins (reviewed in Superti-Furga, FEBS Lett. 369:62-66 (1995). Several cognate phosphoproteins known to bind the Src SH2 domain include middle T antigen, PDGF receptor, EGF receptor, and focal adhesion kinase (FAK). See Courtneidge et al, J. Virol. 65:3301-3308 (1991); Moi et al. EMBO J. 12:2257-2264 (1993); Luttrell et al. Proc. Natl. Acad. Sci.
USA 91:83-87 (1994); and Xing et al, Mol. Biol. Cell 5:413421 (1994). For additional information on other SH2 domains (including, e.g., ZAP-70, Syk, Shc, Tsk, Btk, VAV, Grb2, Crk, STATs) and PI domain-containing proteins, see WO 97/39326 and references cited therein.
The molecular structure of several SH2 domains has been solved and, in particular, the molecular structure of certain SH2 domains in complex with a phosphotyrosine-containing peptide or peptide analog has been elucidated. See Waksman et al, Cell 72:779-790 (1993); Xu et al. Biochemistry 34:2107-2121 (1995); Hatada et al, Nature 377(6544), 32-38 (1995). Whereas the general consensus sequence of Src family SH2-binding peptides, for example, comprises a pTyr-X—X—(Leu/Ile) motif, SH2 domain binding specificity is thought to be influenced significantly by the specific amino acids located carboxy-terminal to the pTyr residue. For example, the pp6oc-src, Fyn, Lck and Fgr SH2 domains prefer the sequence pTyr-Glu-Glu-Ile. See Songyang et al, Cell 72:767-778 (1993). Crystallographic data concerning pp60c-src SH2 in complex with synthetic peptides has revealed, in particular, two important binding determinants for binding to phosphotyrosine-containing proteins or peptides: the phosphotyrosine binding site which is electropositive in nature such that phosphotyrosine binding is stabilized and the lipophilic binding site which stabilizes binding of pTyr+3 residues within the phosphotyrosine-containing peptides via hydrophobic contacts. Reviewed by Brown and Cooper, Biochim. Biophys. Acta 1287 (2-3):121-149 (1996).
Structural studies of phosphotyrosine-containing peptides complexed with isolated SH2 domains has provided information regarding the molecular interactions of peptide ligands with the SH2 domain peptidyl binding site. Recent attempts have been made to extrapolate these data to design novel peptide ligands and peptidomimetic agonists of SH2-mediated signaling. For example, Plummer et al reported that incorporation of C-terminal D-amino acid residues to tripeptide SH2 domain ligands increases affinity relative to their L-amino acid-containing counterparts. See Plummer et al, Drug Design Discovery 13:7581 (1996). Burke et al reported that hexapeptides containing difluoro-(phosphoromethyl)phenylalanine bound SH2 domains with high relative affinity compared to analogous pTyr peptides and were resistant to naturally-occurring cellular phosphatases. Studies of the pTyr residue of peptide agonists of the Src SH2 domain have shown that that phosphate ester is important for molecular recognition, and that significant loss in binding occurs when it is replaced with sulfate, carboxylate, nitro, hydroxy or amino groups. See Gilmer et al, J Biol Chem 269:31711-31719 (1994).
Many signaling pathways which play critical roles in disease processes are mediated by the binding of a phosphotyrosine-containing protein or protein domain with an SH2 or other protein receptor for a tyrosine-phosphorylated domain. Pharmaceutical agents which interfere with signaling mediated by such molecules, e.g., which interfere with the formation or stability of such signaling complexes, may be used for precise intervention in these complex biological processes in order to treat or prevent the diseases or pathological effects mediated by such signaling. Such interference may be achieved through a variety of mechanisms, including competitive inhibition of a phosphotyrosine-containing ligand with its receptor (e.g., with an SH2-containing protein), inhibition of phosphorylation of the tyrosine residue of such a ligand, inhibition of activation of a kinase which catalyzes the phosphorylation of a ligand in a signaling pathway, etc.
Compounds that can enter cells and block a signal transduction pathway of interest, such as an SH2-mediated pathway, would be of great interest as reagents for biological research and for pharmaceutical and veterinary uses.
SUMMARY OF THE INVENTION
This invention concerns compounds of Formula I, or pharmaceutically acceptable derivatives thereof:
in which
Y is
G is —O—, —S— or —NR—;
R
6
comprises —OR, -APO
3
RR′, —OPO
3
RR′, -ASO
3
R, —OSO
3
R, -ACO
2
R, -A-tetrazole, -A—N—(PO
3
RR′)(PO
3
RR′)′, -ASO
2
NRR′, -ACOCF
3
, —(C═O)J, —C(R)(J)(K) or —C(Z)(J)(K);
where each occurrence of A is independently a covalent bond, -G-M- or -(M)
m
-;
each occurrence of M is an independently selected, substituted or unsubstituted, methylene moiety, and any M-M′ moiety may be electronically saturated
Bohacek Regine
Eyermann Charles Joseph
Sawyer Tomi K.
Shakespeare William C.
Sundaramoorthi Rajeswari
Ariad Pharmaceuticals, Inc.
Berstein David L.
Lambkin Deborah C.
LandOfFree
Bicyclic signal transduction inhibitors, compositions... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bicyclic signal transduction inhibitors, compositions..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bicyclic signal transduction inhibitors, compositions... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3118330