Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2000-08-24
2003-05-20
Dentz, Bernard (Department: 1625)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S212010, C514S254080, C514S311000, C514S313000, C514S314000, C540S599000, C544S363000, C546S144000, C546S157000, C546S159000, C546S152000, C546S167000, C546S171000, C546S173000, C546S180000, C546S181000
Reexamination Certificate
active
06566372
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to nonsteroidal compounds that are modulators (i.e., agonists, partial agonists and antagonists) of androgen and progesterone receptors, and to methods for the making and use of such compounds.
BACKGROUND OF THE INVENTION
Intracellular receptors (IRs) form a class of structurally-related genetic regulators scientists have named “ligand dependent transcription factors” (R. M. Evans,
Science
, 240:889, 1988). Steroid receptors are a recognized subset of the IRs, including androgen receptor (AR), progesterone receptor (PR), estrogen receptor (ER), glucocorticoid receptor (GR), and mineralocoticoid receptor (MR). Regulation of a gene by such factors requires both the IR itself and a corresponding ligand, which has the ability to selectively bind to the IR in a way that affects gene transcription.
The natural hormones for steroid receptors have been known for a long time, such as testosterone for AR and progesterone for PR. A synthetic compound that binds to an IR and mimics the effect of the native hormone is referred to as an “agonist”, while a compound that inhibits the effect of the native hormone is called an “antagonist”. The term “modulators” refers to a group of compounds that have a spectrum of activities from agonist, partial agonist to antagonist.
Androgen and progesterone receptor modulators are known to play an important role in health of both men and women. For example, AR antagonists, such as cyproterone acetate, flutamide and casodex, are useful in the treatment of prostatic hyperplasia and cancer of the prostate. AR agonists, such as fluoxymesterone, are used in the treatment of hypogonadism. PR agonists, such as medroxyprogesterone acetate, are used in birth control formulations in combination with the female hormone estrogen or a synthetic estrogen analogue. Further, antagonists of PR are potentially useful for contraception and in the treatment of chronic disorders, such as certain hormone dependent cancers of the breast, ovary and uterus. Due to increased life expectancies, development of tissue selective, safer, orally active AR and PR modulators are desirable to improve quality of life.
A group of hydroquinoline derivatives was recently described as AR and PR modulators (e.g., U.S. Pat. Nos. 5,688,808, 5,688,810, 5,693,646, 5,693,647, 5,696,127, 5,696,130). This group of AR and PR modulators was developed by using cell-based high-throughput assays, termed cotransfection assays. Amino- or hydroxy-trifluoromethylquinolones or coumarins have been described as fluorescent markers in biological systems. See, e.g., U.S. Pat. No. 4,505,852 and E. R. Bissel et al., “Synthesis and Chemistry of 7-Amino-4-(trifluoromethyl)coumarin and Its Amino Acid and Peptide Derivatives”,
J. Org. Chem
., 45:2283, 1980). Analogues of quinolone, oxindole, benzooxazinone derivatives have been described as cardiotonic agents. See, e.g., U.S. Pat. Nos. 3,993,656; 4,415,572; 4,427,654; 4,710,507; 4,728,653; 4,933,336; 5,081,242.
SUMMARY OF THE INVENTION
The present invention is directed to compounds, pharmaceutical compositions, and methods for modulating processes mediated by AR and PR. More particularly, the invention relates to nonsteroidal compounds and compositions that are high affinity, high specificity agonists, partial agonists (i.e., partial activators and/or tissue-specific activators) and antagonists for AR and PR. Also provided are methods of making such compounds and pharmaceutical compositions, as well as critical intermediates used in their synthesis.
For a better understanding of the invention, its advantages, and objects obtained by its use, reference should be had to the accompanying descriptive matter, in which preferred embodiments of the invention are described.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
In accordance with the present invention and as used herein, the following structure definitions are provided for nomenclature purposes. Furthermore, in an effort to maintain consistency in the naming of compounds of similar structure but differing substituents, the compounds described herein are named according to the following general guidelines.
The term “alkyl” refers to an optionally substituted straight-chain or branched-chain hydrocarbon radical having from 1 to about 10 carbon atoms, preferably from 1 to about 6 carbon atoms, and most preferably from 1 to about 4 carbon atoms. Examples of alkyl radical include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl and the like.
The term “alkenyl” refers to a straight-chain or branched-chain hydrocarbon radical having one or more carbon-carbon double-bonds and having from 2 to about 10 carbon atoms, preferably from 2 to about 6 carbon atoms, and most preferably from 2 to about 4 carbon atoms. Preferred alkeny groups include allyl. Examples of alkenyl radicals include ethenyl, propenyl, 1,4-butadienyl and the like.
The term “allyl” refers to the radical H
2
C═CH—CH
2
.
The term “alkynyl” refers to a straight-chain or branched-chain hydrocarbon radical having one or more carbon-carbon triple-bonds and having from 2 to about 10 carbon atoms. Examples of alkynyl radicals include ethynyl, propynyl, butynyl and the like.
The term “aryl” refers to optionally substituted aromatic ring systems. The term aryl includes monocyclic aromatic rings, polycyclic aromatic ring systems, and polyaromatic ring systems. The polyaromatic and polycyclic ring systems may contain from two to four, more preferably two to three, and most preferably two, rings. Preferred aryl groups include 5-or 6-membered aromatic ring systems.
The term “heteroaryl” refers to optionally substituted aromatic ring systems having one or more heteroatoms such as, for example, oxygen, nitrogen and sulfur. The term heteroaryl may include five- or six-membered heterocyclic rings, polycyclic heteroaromatic ring systems, and polyheteroaromatic ring systems where the ring system has from two to four, more preferably two to three, and most preferably two, rings. The terms heterocyclic, polycyclic heteroaromatic, and polyheteroaromatic include ring systems containing optionally substituted heteroaromatic rings having more than one heteroatom as described above (e.g., a six membered ring with two nitrogens), including polyheterocyclic ring systems from two to four, more preferably two to three, and most preferably two, rings. The term heteroaryl includes ring systems such as, for example, pyridine, quinoline, furan, thiophene, pyrrole, imidazole and pyrazole.
The term “alkoxy” refers to an alkyl ether radical wherein the term alkyl is defined as above. Examples of alkoxy radicals include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy and the like.
The term “aryloxy” refers to an aryl ether radical wherein the term aryl is defined as above. Examples of aryloxy radicals include phenoxy, benzyloxy and the like.
The term “cycloalkyl” refers to a saturated or partially saturated monocyclic, bicyclic or tricyclic alkyl radical wherein each cyclic moiety has about 3 to about 8 carbon atoms. Examples of cycloalkyl radicals include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
The term “cycloalkylalkyl” refers to an alkyl radical as defined above which is substituted by a cycloalkyl radical having from about 3 to about 8 carbon atoms.
The term “aralkyl” refers to an alkyl radical as defined above in which one hydrogen atom is replaced by an aryl radical as defined above, such as, for example, benzyl, 2-phenylethyl and the like.
The terms alkyl, alkenyl, and alkynyl include optionally substituted straight-chain, branched-chain, cyclic, saturated and/or unsaturated structures, and combinations thereof.
The terms haloalkyl, haloalkenyl and haloalkynyl include alkyl, alkenyl and alkynyl structures, as described above, that are substituted with one or more fluorines, chlorines, bromines or iodines, or with combinations thereof.
The terms heteroalkyl, heteroalkenyl and heteroalkynyl include optionally substituted alkyl, alkenyl
Martinborough Esther
Motamedi Mehrnouch
Pio Barbara
Tegley Christopher
Van Oeveren Cornelis Arjan
Dentz Bernard
Ligand Pharmaceuticals Incorporated
Paul Hastings Janofsky & Walker LLP
LandOfFree
Bicyclic androgen and progesterone receptor modulator... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bicyclic androgen and progesterone receptor modulator..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bicyclic androgen and progesterone receptor modulator... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3033127