Bicycle rear suspension system providing relative rearward...

Land vehicles – Wheeled – Occupant propelled type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S275000, C280S283000

Reexamination Certificate

active

06203042

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a bicycle rear suspension system which provides an upward and slightly rearward motion of the rear axle relative to the frame. In other words, in comparison to a typical “swing arm” suspension of the type commonly used on rear suspension bicycles wherein the suspension operates so that the rear axle moves upwardly and slightly forwardly relative to the frame, the rear suspension system of the present invention instead moves the rear axle upwardly and slightly rearwardly relative to the frame. The relative rearward motion of the rear axle provides greater clearance and ease in traveling over obstructions.
2. Background of the Related Art
The primary structural component of a conventional two-wheel bicycle is the frame. On a conventional road bicycle, the frame is typically constructed from a set of tubular members assembled together to form the frame. For many bicycles, the frame is constructed from members commonly referred to as the top tube, down tube, seat tube, seat stays and chain stays, and those members are joined together at intersections commonly referred to as the head tube, seat post, bottom bracket and rear dropout. The top tube usually extends from the head tube rearwardly to the seat tube. The head tube, sometimes referred to as the neck, is a short tubular structural member at the upper forward portion of the bicycle which supports the front steering fork, which has the front wheel on it, and the handlebar. The down tube usually extends downwardly and rearwardly from the head tube to the bottom bracket, the bottom bracket usually comprising a cylindrical support member for the pedals and chain drive mechanism which powers the bicycle. The seat tube usually extends from the bottom bracket upwardly to where it is joined to the rear end of the top tube. The seat tube also usually functions to telescopically receive a seat post for supporting a seat or saddle for the bicycle rider to sit on. The chain stays normally extend rearwardly from the bottom bracket, and the seat stays normally extend downwardly and rearwardly from the top of the seat tube, the chain stays and seat stays being joined together with a rear dropout for supporting the rear axle of the rear wheel. The portion of the frame defined by the head tube, seat post and bottom bracket and the structural members that join those three items together can be referred to as the main front triangular portion of the frame, with the seat stays and chain stays defining a back triangular portion of the frame. The foregoing description represents the construction of a conventional bicycle frame which of course does not possess a suspension having any shock absorbing characteristics.
The increased popularity in recent years of off-road cycling, particularly on mountains and cross-country, has made a shock absorbing system in many instances a biking necessity. A bicycle with a properly designed suspension system is capable of traveling over extremely bumpy, uneven terrain and up or down very steep inclines. Suspension bicycles are less punishing, reduce fatigue and reduce the likelihood of injury to the rider, and are much more comfortable to ride. For off-road cycling in particular, a suspension system greatly increases the rider's ability to control the bicycle because the wheels remain in contact with the ground as they ride over rocks and bumps in the terrain instead of being bounced into the air as occurs on unsuspended conventional bicycles.
Over the last several years the number of bicycles now equipped with suspension systems has dramatically increased. In fact, many bicycles are now fully suspended, meaning that the bicycle has both a front suspension and a rear suspension. Front suspensions were the first to become popular. Designed to increase the rider's steering control by removing the pounding to the bicycle front end, the front suspension is simpler to implement than a rear suspension and a front suspension steering fork is easy to retrofit onto an older model bicycle. On the other hand, a rear suspension will increase traction, assist in cornering and balance the ride. Riding a fully suspended mountain bike down a rough, rock strewn trail, or even level riding on city and country roads, provides a new degree of safety and comfort to the rider. It is in downhill riding and racing that a rear suspension is most beneficial, but even on ordinary city and country roads, a rear suspension allows the rider to look forward more safely to view traffic and road conditions without paying disproportionate attention to stones and potholes immediately below.
A number of pivoting “swing arm” suspensions have been developed for rear wheel suspensions on bicycles. In its simplest configuration, the chain stays, which on a conventional bicycle frame are rigidly mounted, are replaced by a pair of swing arms that are pivotally attached at their front ends to the main front triangular portion of the frame. The rear ends of the swing arms, which carry the rear wheel, move upward and downward in response to the rear wheel striking rocks, curbs and other obstructions. The range of movement of the swing arm usually is controlled by a shock absorber affixed between the swing arm and the main front frame.
An example of one highly successful full suspension bicycle is disclosed in the applicant's own U.S. Pat. No. 5,685,553, which relates to a rear suspension for a bicycle having a Y-shaped frame. Like many other fully suspended bicycles, the rear suspension system disclosed in the applicant's '553 patent is comprised of a main front frame, a rear swing arm (which in the '553 patent is described as a unified rear triangle), and a shock absorber. The swing arm pivots about a single pivot point on the frame, and the shock absorber, which is attached to both the frame and also to the rear swing arm, controls its movement. When the rear wheel hits, for instance, a rock, the swing arm pivots upwardly to allow the wheel to travel over the obstruction. The movement of the rear axle is of course dependent on the pivotal movement of the swing arm. Therefore, as the swing arm pivots upwardly about the main pivot point on the frame, the rear axle must necessarily move in an arc, which means that the rear axle moves upwardly and also slightly forwardly.
FIG. 5
schematically illustrates the arcuate path of the rear axle on a common single pivot swing arm rear suspension system. This forward movement of the rear axle relative to the frame, even if it is only a small amount, causes the rear wheel to become “hung up” on an obstruction and to momentarily jerk the bicycle rearwardly until the rear wheel clears the obstruction.
Like all other fields of industry, the bicycle industry as a whole and bicycle racing in particular is extremely competitive, resulting in an evolution of many different designs for rear suspensions. Bicycle designers have tried to optimize the performance of the rear suspension system by, among other things, moving the pivot point of the swing arm. Such rear suspension designs can be generally categorized into one of three categories: the low pivot, the high pivot and the multiple pivot. For example, U.S. Pat. No. 5,217,241 (Girvin) discloses a low pivot rear suspension. Here, a single pivot is located relatively close to the line of the top of the run of the chain, slightly above the bottom bracket. In contrast, the high pivot rear suspension generally has the pivot position relatively high above the chain and front derailer. Multiple pivot rear suspensions commonly employ the use of one or more additional components which function nothing more than to redirect the force of the shock absorbers so that it may be placed in a novel location. Multiple pivot rear suspension systems are illustrated for example in U.S. Pat. No. 5,226,674 (Buell) and U.S. Pat. No. 5,244,224 (Busby).
In virtually all such designs the arcuate motion of the swing arm results in a less than fully effective suspension motion of the re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bicycle rear suspension system providing relative rearward... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bicycle rear suspension system providing relative rearward..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bicycle rear suspension system providing relative rearward... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2509603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.