Bicycle pedal assembly

Machine element or mechanism – Elements – Cranks and pedals

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C036S131000

Reexamination Certificate

active

06722229

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to a bicycle pedal assembly. More specifically, the present invention relates clipless or step-in bicycle pedal assembly, which has a pedal with a rear pivoting clamp member and cleat stopping arrangement that limits rearward movement of the cleat.
2. Background Information
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle as well as the frame of the bicycle. One component that has been extensively redesigned is the bicycle pedal.
In recent years, bicycle pedals have been designed for specific purposes such as for pleasure, off road biking, road racing, etc. One particular type of bicycle pedal, which is gaining more popularity, is the step-in or clipless pedal, which releasably engages a cleat secured to the sole of a cyclist's shoe. The clipless pedal has a pedal spindle that can be mounted on the crank of a bicycle, a pedal body that is rotatably supported on this pedal spindle, and a cleat engagement mechanism. In an off road bicycle pedal a cleat engagement mechanism is formed on both sides of the pedal body for engaging a cleat. A road-racing pedal, on the other hand, typically only has a cleat engagement mechanism on one side of the pedal body. In either case, in these types of bicycle pedals, the rider steps onto the pedal and the cleat engagement mechanism automatically grips on to the cleat secured to the bottom of the cyclist's shoe.
With this type of step-in or clipless pedal, the shoe and the pedal are in a state of constant engagement when the cleat is engaged in the cleat clamping members, so the pedaling force can be transmitted efficiently to the pedals. As a result, step-in or clipless pedals are widely employed on racing bicycles used in road racing and mountain bike racing.
When attaching the cyclist's shoe to the step-in or clipless pedal via the cleat, the cyclist moves the shoe obliquely downwardly and forwardly relative to the pedal body such that the front end of the cleat engages a front hook or clamping member of the pedal body. Once the front end of the cleat is engaged with the front hook of the pedal body, the cyclist places the rear end of the cleat in contact with a guide portion of the rear hook or clamping member of the pedal body. In this position, the cyclist presses the shoe downwardly against the pedal to cause the rear hook or clamping member to initially pivot rearwardly against the force of a spring to move the rear hook or clamping member to a cleat releasing position. The rear end of the cleat then enters a position opposite a back face of the rear hook or clamping member. Then, the rear hook or clamping member returns under the force of a biasing member or spring so that the rear hook or clamping member engages the rear end of the cleat. This engagement fixes the cyclist's shoe to the pedal via the cleat.
Typically, these step-in or clipless pedals and the cleats for these pedals are designed to allow a limited amount of play or float between the pedal and the cleat (while engaged), but prior to disengagement. When releasing the shoe from the pedal, the cyclist will typically turn the shoe about an axis FP perpendicular or approximately perpendicular to the tread of the pedal, using the front end of the cleat as a pivoting point. As a result of this pivoting action, the rear hook or clamping member is pivoted rearwardly against the force of the spring to a cleat releasing position to release the shoe. It is important that the cleat does not inadvertently release the pedal during normal pedaling.
Some of these prior step-in or clipless pedals can inadvertently release the cleat during normal pedaling if the spring force on the rear clamping member is set too low. However, if the spring force on the rear clamping member is set too high, the cleat may not release from the pedal properly. This could result in the rider's shoe not properly releasing from the pedal at the desired application of force because the rider's shoe either releases too easily from the pedal or does not release at the proper time.
Many of these prior step-in or clipless pedals can be complicated and expensive to manufacture and assemble. Additionally, these step-in or clipless pedals can become clogged with mud and or debris making engagement/disengagement difficult. Moreover, some of these step-in or clipless pedal sometimes do not transfer power to the bicycle crank arms in the most efficient manner. Finally, these step-in or clipless pedal can be uncomfortable and cause fatigue to the riders foot after extended riding periods.
In view of the above, there exists a need for an improved bicycle pedal assembly that takes into account at least come of the above mentioned problems in the prior art. This invention addresses this need in the prior art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a step-in bicycle pedal assembly that is configured and arranged to avoid inadvertently release of the cleat from the pedal during normal pedaling.
Another object of the present invention is to provide a step-in bicycle pedal assembly that is relatively lightweight and malfunction free.
Still another object of the present invention is to provide a step-in bicycle pedal assembly that has a rear floating pivot axis.
Yet another object of the present invention is to provide a step-in bicycle pedal assembly that is relatively simple and inexpensive to manufacture.
The foregoing objects can basically be achieved by providing a bicycle pedal assembly comprising a bicycle pedal and a bicycle cleat. The bicycle pedal includes a pedal shaft, a pedal body, a front clamping member and a rear clamping member. The pedal shaft has a first end adapted to be coupled to a bicycle crank and a second end with a center rotation axis extending between the first and second ends. The pedal body is rotatably coupled to the second end of the pedal shaft about the center rotation axis of the pedal shaft. The pedal body has a front end and a rear end longitudinally spaced from the front end with a first cleat stop surface located between the center rotation axis and the front end. The front clamping member is coupled to the front end of said pedal body. The rear clamping member is movably coupled to the rear end of the pedal body to move rearwardly between a clamping position and a release position. The bicycle shoe cleat is selectively engageable with the pedal body via the first and second clamping members and includes a front attachment portion, a rear attachment portion and a connecting portion. The front attachment portion is configured to selectively engage the front clamping member. The rear attachment portion is configured to selectively engage the rear clamping member. The connecting portion connecting portion extends between the front and rear attachment portions. The connecting portion has a second cleat stop surface arranged and configured relative to the first cleat stop surface to engage the first cleat stop surface after a predetermined amount of rearward movement of the bicycle shoe cleat relative to the pedal body to prevent further relative movement between the bicycle shoe cleat and the pedal body when the front and rear clamping members are engaged with the front and rear attachment portions, respectively.
The foregoing objects can also basically be achieved by providing bicycle pedal comprising a pedal shaft, a pedal body, a front clamping member and a rear clamping member. The bicycle pedal includes a pedal shaft, a pedal body, a front clamping member and a rear clamping member. The pedal shaft has a first end adapted to be coup

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bicycle pedal assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bicycle pedal assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bicycle pedal assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263739

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.