Bicycle pedal assembly

Machine element or mechanism – Elements – Cranks and pedals

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C074S594400

Reexamination Certificate

active

06708584

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to a bicycle pedal assembly. More specifically, the present invention relates clipless or step-in bicycle pedal assembly, which has a rear float pivot axis for relative rotation of the cleat and pedal.
2. Background Information
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle as well as the frame of the bicycle. One component that has been extensively redesigned is the bicycle pedal.
In recent years, bicycle pedals have been designed for specific purposes such as for pleasure, off road biking, road racing, etc. One particular type of bicycle pedal, which is gaining more popularity, is the step-in or clipless pedal, which releasably engages a cleat secured to the sole of a cyclist's shoe. The clipless pedal has a pedal spindle that can be mounted on the crank of a bicycle, a pedal body that is rotatably supported on this pedal spindle, and a cleat engagement mechanism. In an off road bicycle pedal a cleat engagement mechanism is formed on both sides of the pedal body for engaging a cleat. A road-racing pedal, on the other hand, typically only has a cleat engagement mechanism on one side of the pedal body. In either case, in these types of bicycle pedals, the rider steps onto the pedal and the cleat engagement mechanism automatically grips on to the cleat secured to the bottom of the cyclist's shoe.
When attaching the cyclist's shoe to the step-in or clipless pedal via the cleat, the cyclist moves the shoe obliquely downwardly and forwardly relative to the pedal body such that the front end of the cleat engages a front hook or clamping member of the pedal body. Once the front end of the cleat is engaged with the front hook of the pedal body, the cyclist places the rear end of the cleat in contact with a guide portion of the rear hook or clamping member of the pedal body. In this position, the cyclist presses the shoe downwardly against the pedal to cause the rear hook or clamping member to initially pivot rearwardly against the force of a spring to move the rear hook or clamping member to a cleat releasing position. The rear end of the cleat then enters a position opposite a back face of the rear hook or clamping member. Then, the rear hook or clamping member returns under the force of a biasing member or spring so that the rear hook or clamping member engages the rear end of the cleat. This engagement fixes the cyclist's shoe to the pedal via the cleat.
Typically, these step-in or clipless pedals and the cleats for these pedals are designed to allow a limited amount of play or float between the pedal and the cleat (while engaged), but prior to disengagement. When releasing the shoe from the pedal, the cyclist will typically turn the shoe about an axis FP perpendicular or approximately perpendicular to the tread of the pedal, using the front end of the cleat as a pivoting point. As a result of this pivoting action, the rear hook or clamping member is pivoted rearwardly against the force of the spring to a cleat releasing position to release the shoe.
With this type of step-in or clipless pedal, the shoe and the pedal are in a state of constant engagement when the cleat is engaged in the cleat clamping members, so the pedaling force can be transmitted efficiently to the pedals. As a result, step-in or clipless pedals are widely employed on racing bicycles used in road racing and mountain bike racing.
However, these step-in or clipless pedals can be complicated and expensive to manufacture and assemble. Additionally, these step-in or clipless pedals can become clogged with mud and or debris making engagement/disengagement difficult. Moreover, some of these step-in or clipless pedal sometimes do not transfer power to the bicycle crank arms in the most efficient manner. Finally, these step-in or clipless pedal can be uncomfortable and cause fatigue to the riders foot after extended riding periods.
In view of the above, there exists a need for a bicycle pedal assembly which overcomes the above mentioned problems in the prior art. This invention addresses this need in the prior art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a step-in bicycle pedal assembly that is relatively easy to assemble and disassemble.
Another object of the present invention is to provide a step-in bicycle pedal assembly that is relatively simple and inexpensive to manufacture.
Another object of the present invention is to provide a step-in bicycle pedal assembly that is relatively lightweight and malfunction free.
Still another object of the present invention is to provide a step-in bicycle pedal assembly that has a rear floating pivot axis.
The foregoing objects can basically be achieved by providing a bicycle pedal assembly comprising a bicycle pedal and a bicycle cleat. The bicycle pedal includes a pedal shaft, a pedal body, a front clamping member and a rear clamping member. The pedal shaft has a first end adapted to be coupled-to a bicycle crank and a second end with a center rotation axis extending between the first and second ends. The pedal body is rotatably coupled to the second end of the pedal shaft about the center rotation axis of the pedal shaft and has a first end and a second end. The front clamping member is coupled to the first end of said pedal body and has a front cleat engagement surface facing in a first direction. The rear clamping member is coupled to the second end of the pedal body and has a rear cleat engagement surface facing in the first direction. The rear cleat engagement surface is offset from the front cleat engagement surface. The bicycle shoe cleat is selectively engageable with the pedal body via the first and second clamping members and includes a front attachment portion, a rear attachment portion and a connecting portion. The front attachment portion has a front coupling surface selectively engageable with the front engagement surface of the front clamping member. The rear attachment portion has a rear coupling surface selectively engageable with the rear engagement surface of the rear clamping member. The connecting portion connects the front and rear attachment portions together. The front and rear clamping members and the front and rear attachment portions are configured to form a rear float pivot axis on a rear side of the center rotation axis and a front cleat release pivot axis on a front side of the center rotation axis when the cleat and the pedal are coupled together. The rear float pivot axis is substantially perpendicular to the rear cleat engagement surface.
The foregoing objects can also basically be achieved by providing bicycle pedal comprising a pedal shaft, a pedal body, a front clamping member and a rear clamping member. The pedal shaft has a first end adapted to be coupled to a bicycle crank and a second end with a center rotation axis extending between the first and second ends. The pedal body is rotatably coupled to the second end of the pedal shaft about the center rotation axis of the pedal shaft and has a first end and a second end. The front clamping member is coupled to the first end of the pedal body. The front clamping member has a front cleat engagement surface facing in a first direction and a front cleat control surface extending substantially perpendicular to the front cleat engagement surface. The rear clamping member is coupled to the second end of the pedal body. The rear clamping member has a rear cleat engagement surface facing in the first direction and a rear cleat control surface extending substantially perpendicular to the rear cleat engagement surface. The rear cleat engagement surfa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bicycle pedal assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bicycle pedal assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bicycle pedal assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3213426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.