Bi/multi-directional filter cartridge and filter platform...

Surgery – Respiratory method or device – Means for removing substance from respiratory gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S206170

Reexamination Certificate

active

06761169

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of air filter devices. More particularly, filter devices structured for coupling with a breathing apparatus, such as a respirator or mask or other source of suction, and so as to provide the ability to couple one or more filter elements to a filter platform connected to the breathing apparatus, such that the filter elements and platform function together as an integrated filtering device. More particularly the present invention relates to filter cartridges of the type operable to filter out both particulate matter and to absorb and/or adsorb gases, odors and vapors.
2. Description of the Related Art
When a person is subject to adverse breathing conditions, such as in an environment contaminated with airborne particles and/or harmful vapors, that person's safety and health will require some type of device for filtering the air before it passes into his or her lungs. To achieve this goal, requirements for such filtering devices have been codified (42 C.F.R. § 84) by the National Institute of Occupational Safety and Health (NIOSH). NIOSH regulations were revised to be made substantially more stringent (in June 1995, with a grandfather clause for three years, effective June 1998), to require that these filtering devices demonstrate increased efficiency, a measure of its ability to remove contaminants from air as it is drawn (breathed) through the filtering device.
Historically, improvements in the efficiency of a filtering device have resulted in a concomitant increase in the difference in air pressure between the environment and the interior of the filtering device required for drawing air through it at a given rate. This pressure differential is commonly referred to as pressure drop of the filtering device. Further, increased efficiency in a filtering device also typically has led to a reduction in the effective life span of the filtering device. Consequently, with prior art filtering devices, greater safety through improved filter efficiency has typically made such devices difficult to breathe through and of extremely limited life span. As a result, in addition to breathing discomforts, users experience frequent periods of down time as they must either leave the work area and/or stop working to remove and replace filtering devices.
Accordingly, it has long been a goal of those in the field of filtering devices to develop a filtering device that meets the natural and codified safety requirements of users while demonstrating a pressure drop that is sufficiently low to allow comfortable breathing by the user and, even more importantly, while functioning effectively for a greater period of time.
To attain such improvements, inventors have manipulated the shapes and sizes of the air filters to maximize surface area in the hope that, with increased area over which filtering can be conducted, acceptable efficiency can be realized while at the same time affording the user a low pressure drop and, thus, comfortable breathing. However, filters can be made only so large before they begin to interfere with a user's vision or mobility. Inventors have also experimented with improved materials in attempted furtherance of the same goals. To date, even slight improvements in efficiency, pressure drop, or life span have been hailed as marked improvements in the art.
One attempt to increase the surface area of the filter is illustrated in U.S. Pat. No. 2,130,555 to Malcolm. The Malcolm patent shows a dust filter unit of a generally tubular form, but having within the unit a filter having a plurality of bellows-like folds. The bellows-like folds provide increased surface area in the filter without the necessity of increasing the diameter of the unit.
The filter unit shown by Malcolm has the advantage of increasing the surface area of the filter medium. However, the folds are part of an integrally formed filter media. Therefore, the design does not permit more or less surface area to be used in accordance with particular needs. Further, the central aperture of each stage reduces the amount of potential surface area of the filter material that is actually used for filtration.
U.S. Pat. No. 2,227,959 to Cover shows a filter composed of three elements connected to one another. The three elements are each structured differently from one another so as to be placed at an assigned position in the filter. However, the device requires specialized innermost and outermost filter elements, which would require that at least three types of filter units be kept in stock at all times. Further the construction of the filter shown in Cover, in which the filter walls are tucked into a cavity in a retaining plate, would be somewhat prone to leakage, compared to modern units in which the filter walls are sealingly engaged to one another around their periphery, and might not meet the more stringent standards in effect today, such as those promulgated by NIOSH. In addition, the central aperture of each stage reduces the amount of potential surface area of the filter material that is actually used for filtration.
U.S. Pat. No. 2,235,624 to Schwartz shows a filter unit for respirators having a cylindrical filter casing of a depth sufficient to hold two disk-shaped filter pads. The filter pad within the casing farthest away from the breathing mask is formed of two circular pads stitched together circumferentially at the edges to form the disk-shaped filter pad, and having an aperture formed through both circular pads to allow a supporting tube element to pass there through. The disk-shaped filter pad closest to the mask is formed similarly but is only apertured on one side. The supporting tube enters the aperture of this innermost pad and comes to an end therein without passing entirely through the innermost pad.
The filter unit taught by Schwartz has several disadvantages. For one thing, the requirement of rigidity of the outer cylindrical filter holder would tend to increase the weight of the mask. Also, the innermost filter pad is of a different construction than the outermost pad, which means that, similar to the situation in the Cover patent, two types of replacement filter elements must be maintained in stock. Further, the central aperture of each stage reduces the amount of potential surface area of the filter material that is actually used for filtration.
U.S. Pat. No. 2,951,551 to West shows an air purifying cannister that is formed from individual filtration units fitted together. Each unit has a male as well as a female connector and a rigid outer wall. The units may be mated in series ad infinitum to form a composite cannister of desired length. Each unit has a tube formed therethrough to allow for the passage of already-filtered air from one unit to the next. The tube is fitted with a cap on the unit farthest from the mask or source of suction to prevent unfiltered air from entering the tube.
The West filter unit, due to the requirement for rigidity, would become very heavy and would be very uncomfortable for the wearer after prolonged use, especially in comparison to the light-weight simple disk filter pad units currently preferred for long term use. Further the weight of the cannister, as additional units are added, would cause a great deal of stress to be applied to the air inlet of any mask using the filter, which may lead to fatigue of the connection materials and eventual breakage. Moreover, the central aperture of each stage reduces the amount of potential surface area of the filter that is actually used for filtration.
A common disadvantage of the types of filter units described above is the high ratio of non-functioning structural materials to functioning filtration material. As a result of this ratio, providing the user with increased filter surface area would result in an associated increase in weight of the filter. Modern filter units are expected to be light in weight, to ensure the comfort of the user.
A prevalent type of light-weight filter pad currently in use is the 3M® P100 Par

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bi/multi-directional filter cartridge and filter platform... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bi/multi-directional filter cartridge and filter platform..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bi/multi-directional filter cartridge and filter platform... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3234641

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.