Dispensing – Plural sources – compartment – containers and/or spaced jacket – Cabinet-type dispenser for single mixed drinks
Reexamination Certificate
1999-06-04
2001-09-11
Kaufman, Joseph A. (Department: 3754)
Dispensing
Plural sources, compartment, containers and/or spaced jacket
Cabinet-type dispenser for single mixed drinks
C222S146600, C062S390000
Reexamination Certificate
active
06286720
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to beverage dispensers and, more particularly, but not by way of limitation, to a beverage dispenser with an improved component configuration which increases both the beverage dispensing capacity and the quantity of beverage dispensed at a cooler temperature.
2. Description of the Related Art
Self-service beverage dispensers are growing in popularity and availability. More people than ever before enjoy today's convenience of selecting a beverage of choice from a beverage dispenser. By placing a cup accordingly and activating a valve, the beverage dispenser dispenses a desired drink into the cup at a preset rate and at a desired temperature, such as the industry standard of less than 42° F.
Beverage dispensers introduced into new commercial settings must compete with other products for limited shelf space. Accordingly, there is a demand to design compact beverage dispensers, which can sufficiently serve a large number of customers. Consequently, compact designs featuring beverage dispensers with smaller and, thus, less effective internal refrigeration units compromise the ability to serve large numbers of customers beverages below the standard of 42° F. Ultimately, designers of compact beverage dispensers identified a need to increase the cooling efficiency of refrigeration units to accommodate large numbers of customers.
U.S. Pat. No. 5,368,198, which issued Nov. 29, 1994 to Goulet, discloses a beverage dispenser that attempts to combine compactness with increased beverage dispensing capacity. In operation, a refrigeration unit cools a cooling fluid within a cooling chamber so that the cooling fluid freezes in a slab about the refrigeration unit's evaporator coil, which is set within the cooling chamber. An agitator motor drives an impeller via a shaft to circulate unfrozen cooling fluid about the cooling chamber. Proper circulation requires a steady flow of the unfrozen cooling fluid from underneath the frozen cooling fluid slab, around its sides, over its top, and back through its center. Circulation of the unfrozen cooling fluid along this described path is essential to the heat transfer process which produces cool drinks and increases beverage dispensing capacity. Such circulation provides for the heat transfer between unfrozen cooling fluid and, relatively warmer, product, water, and carbonated water lines positioned within the cooling chamber.
Specifically, the unfrozen cooling fluid receives heat from the product and water lines as well as, in part, from the carbonated water line and delivers that heat to the frozen cooling fluid slab as it circulates about the cooling chamber. As such, the frozen cooling fluid melts to dissipate the heat from the product, water, and carbonated water so that a resulting cold beverage is dispensed as the cooled product and carbonated water or water act to form the desired drink. Unfortunately, the carbonated water line of the beverage dispenser disclosed in U.S. Pat. No. 5,368,198 fails to provide for the total cooling of carbonated water exiting the beverage dispenser's carbonator. In particular, by being exposed over time to the warmer surrounding atmosphere, a segment of the carbonated water line extending outside the bath of cooling fluid is subject to warming in that there is no desired heat exchange with the cooling fluid along the segment which diminishes the overall cooling efficiency of the beverage dispenser.
In addition, U.S. Pat. No. 5,368,198 features an evaporator coil consisting of two pieces bused together whereby a series of inner and outer coil sections reside along the same horizontal plane. Accordingly, a resulting frozen slab will bulge around the area where the inner and outer coil sections lie in the same horizontal plane such that unfrozen cooling fluid will encounter great difficulty in flowing through the channel defined by the hollowed interior portion of the slab. Thus, such improperly distributed bulges would greatly hinder or completely stop the free-flow of cooling fluid either by creating an undesirably narrow channel whereby cooling fluid could not satisfactorily flow therethrough or, in some cases, by completely freezing over the channel. In the same manner, bulges can completely freeze up an entire beverage dispenser by allowing the frozen slab of cooling fluid to grow and run into the walls of a cooling chamber. Such encumbrances acting against the free-flow of unfrozen cooling fluid thus diminishes the overall cooling efficiency of a beverage dispenser.
Accordingly, there is a long felt need for a compact beverage dispenser which occupies very little shelf space and permits the maximum transfer of heat between the product, water, and carbonated water lines and the unfrozen cooling fluid, thereby increasing cooling efficiency and, ultimately, drink dispensing capacity.
SUMMARY OF THE INVENTION
In accordance with the present invention, a beverage dispenser with an improved component configuration includes a housing defining a cooling chamber having a top and a bottom portion as well as a cooling fluid contained therein. The beverage dispenser includes a water line substantially submerged within the cooling fluid and coupled with a water source and a carbonator disposed within the cooling chamber and coupled with the water line and a carbon dioxide gas source. The beverage dispenser further includes a rechill line substantially submerged within the cooling fluid and coupled with the carbonator. Additionally, the beverage dispenser includes product lines, substantially submerged within the cooling chamber and coupled with a product source. Thus, a supply of chilled water, chilled carbonated water, and chilled product necessary for the formation of a desired drink by the beverage dispenser are provided by the carbonator, the water line, the rechill line, and the product lines.
Moreover, the rechill line and the water line are positioned in cooperation with each other for directing the flow of cooling fluid about the cooling chamber. To facilitate placement in the cooling chamber, the rechill line may assume a serpentine configuration formed by channels that direct the flow of cooling fluid about the cooling chamber.
The beverage dispenser still further includes dispensing valves mounted on the housing. The dispensing valves are coupled to the product lines and to at least one of the rechill lines and the water line to deliver a beverage.
A refrigeration unit including an evaporator coil positioned substantially centrally within the cooling chamber provides cooling for the cooling fluid. The evaporator coil, a one piece unit, includes a substantially concentric coil defined by an outer coil section and an inner coil section that is disposed within and substantially offset from the outer coil section. The substantially offset coils are an improved design to uniformly distribute the frozen slab that freezes about the evaporator coil so as to ultimately allow for the optimal flow of unfrozen cooling fluid around the frozen cooling fluid slab and through a channel defined by a hollowed interior portion of the slab. In particular, each inner and outer coil section develops a frozen cooling portion that freezes with an adjacent portion thus decreasing the formation time for creating a slab of frozen cooling fluid.
Furthermore, to ensure that the cooling fluid freezes to form a uniform slab with maximum cooling effect, an optimal horizontal distance and an optimal vertical distance between adjacent inner and outer coil sections, respectively, are provided. To further enhance heat transfer, the inner coil section and/or outer coil section may be substantially parallel to the top and bottom sections of the cooling chamber. The evaporator coil may also be configured with a rough outer surface texture, a thin wall thickness, and/or a material composition that best facilitates maximum heat transfer about the evaporator coil.
The beverage dispenser component configuration for enhancing serviceability includes a
Hawkins, Jr. John Thomas
Simmons Darren W.
Kaufman Joseph A.
Lancer Partnership Ltd.
Makay Christopher L.
LandOfFree
Beverage dispenser with an improved cooling chamber... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Beverage dispenser with an improved cooling chamber..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Beverage dispenser with an improved cooling chamber... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2523290