Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing
Reexamination Certificate
2001-07-12
2002-08-27
Richter, Johann (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Oxygen containing
C568S328000, C568S332000, C568S333000, C568S334000, C568S336000, C568S312000, C568S314000, C568S315000, C568S321000, C544S106000, C544S178000, C546S191000, C546S195000, C546S196000, C546S204000, C564S316000
Reexamination Certificate
active
06441244
ABSTRACT:
The invention relates to new compounds which can be used as photoinitiators and/or photosensitizers, to a process for preparing these compounds and to their use as photoinitiators and/or photosensitizers.
The new compounds are of the general formula (I)
in which
R is phenyl, C
1-4
alkyl-, C
1-4
alkoxy- or halogen-substituted phenyl, naphthyl or an aromatic ring containing heteroatoms;
X is O, S, SO or SO
2
;
R
1
and R
2
are each an C
1-4
alkyl radical together having from 4 to 16 carbon atoms or
R
1
and R
2
together are a C
4-8
alkylene radical;
Y is hydroxyl, C
1-12
alkoxy, C
1-4
alkylamino, di-C
1-4
alkylamino or a piperidine or morpholine ring that is attached by its nitrogen atom.
Preferably, R is an unsubstituted phenyl ring or a chloro- or C
1-4
alkyl-substituted phenyl ring, X is oxygen, R
1
and R
2
are each a methyl radical and Y is hydroxyl or morpholine.
The compounds of the formula (I) are prepared by halogenating compounds of the formula (II)
in which R, X, R
1
and R
2
are as defined above and exchanging the halogen radical for the group Y using corresponding compounds. It is preferred to use elemental bromine and to exchange the bromine radical for hydroxyl, alkoxy or amino in an alkaline medium.
The compounds of the formula (II) are likewise new and may be prepared by reacting compounds of the formula (III)
in which R and X are as defined above with compounds of the formula (IV)
and/or their reactive derivatives, in which R
1
and R
2
are as defined above, in the presence of appropriate catalysts, e.g. AlCl
3
.
All process steps are reactions which are known per se, and may be carried out in analogy to processes already described, under known reaction conditions.
The new compounds are photoinitiators and/or photosensitizers for photopolymerizable unsaturated compounds.
Examples of such compounds are unsaturated monomers such as esters of acrylic or methacrylic acid, e.g. methyl, ethyl, n- or tert-butyl, isooctyl or hydroxyethyl acrylate, methyl or ethyl methacrylate, ethylene diacrylate, neopentyl diacrylate, trimethylolpropane trisacrylate, pentaerythritol tetraacrylate or pentaerythritol trisacrylate; acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-substituted (meth)acrylamides; vinyl esters such as, for example, vinyl acetate, propionate, acrylate or succinate; other vinyl compounds such as vinyl ethers, styrene, alkylstyrenes, halostyrenes, divinylbenzene, vinylnaphthalene, N-vinylpyrrolidone, vinyl chloride or vinylidene chloride; allyl compounds such as diallyl phthalate, diallyl maleate, triallyl isocyanurate, triallyl phosphate or ethylene glycol diallyl ether, and the mixtures of such unsaturated monomers.
Further photopolymerizable compounds include unsaturated oligomers or polymers and their mixtures with unsaturated monomers. These include thermoplastic resins containing unsaturated groups such as fumaric ester, allyl groups or acrylate or methacrylate groups. These unsaturated groups are generally attached to the main chain of these linear polymers by way of functional groups. Great importance is possessed by mixtures of oligomers with mono- and polyunsaturated monomers. Examples of such oligomers are unsaturated polyesters, unsaturated acrylic resins and isocyanate- or epoxy-modified acrylate oligomers and also polyether acrylate oligomers. Examples of polyunsaturated compounds include in particular the acrylates of diols and polyols, e.g. hexamethylene diacrylate or pentaerythritol tetraacrylate. As monounsaturated monomers, as well, preference is given to acrylates such as, for example, butyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate or 2-hydroxypropyl acrylate. By selecting from the various representatives of the three components it is possible to vary the consistency of the unpolymerized mixture and also the plasticity of the polymerized resin.
Besides these three-component mixtures, two-component mixtures play a particularly important part in the case of the polyester resins. These two-component mixtures generally consist of an unsaturated polyester and a vinyl compound. The unsaturated polyesters are oligomeric esterification products of at least one unsaturated dicarboxylic acid such as, for example, maleic, fumaric or citraconic acid and generally at least one saturated dicarboxylic acid, such as phthalic acid, succinic acid, sebacic acid or isophthalic acid, for example, with glycols such as ethylene glycol, 1,2-propanediol, diethylene or triethylene glycol or tetramethylene glycol, for example, with monocarboxylic acids and monoalcohols usually being used as well for the purpose of modification. These unsaturated polyesters are commonly dissolved in a vinyl or allyl compound, with styrene being used preferably for this purpose.
Photopolymerizable systems as used for various purposes generally include not only the photopolymerizable compounds and the photoinitiator but also a number of other additions. Thus in many cases it is common to add thermal inhibitors, whose purpose is to protect the systems against premature polymerization, especially during the preparation of the systems by mixing of the components.
In order to increase the dark storage stability it is possible to add copper compounds such as copper naphthenate, stearate or octoate, phosphorus compounds such as triphenylphosphine, tributylphosphine, triethyl phosphite, triphenyl phosphite or tribenzyl phosphate, quaternary ammonium compounds such as tetramethylammonium chloride or trimethylbenzylammonium chloride, or hydroxylamine derivatives such as N-diethylhydroxylamine, for example.
Photopolymerizable systems further include—depending on intended use—fillers such as silica, talc or gypsum, pigments, dyes, fibers, thixotropic agents or leveling assistants.
It is also possible to use combinations with known photoinitiators, such as benzoin ethers, dialkoxyacetophenones or benzil ketals.
For the photopolymerization of thin films and printing inks in particular it is possible to use combinations of the photoinitiator of the invention with amines and/or aromatic ketones. Examples of amines are triethylamine, N-methyldiethanolamine, N-dimethylethanolamine and p-dimethylaminobenzoic esters. Examples of ketones are benzophenone, substituted benzophenone derivatives, Michler's ketone, anthraquinone and anthraquinone derivatives, and also thioxanthone and its derivatives.
Photocuring is of great importance for printing inks, since the drying time of the binder is a critical factor for the production speed of graphic products and should be within the order of fractions of seconds. The initiator of the invention is also highly suitable for photocurable systems for producing printing plates. In this case mixtures, for example, of soluble linear polyamides with photopolymerizable monomers, such as acrylamides, and a photoinitiator are used. Films or plates of these systems are exposed via the negative (or positive) of the print original and the uncured portions are subsequently washed out using a solvent.
A further field of use of UV curing is that of metal coating, an example being the painting of metal sheets for tubes, cans or bottle caps, and also the UV curing of plastics coatings, examples being floor or wall coverings based on PVC.
Examples of the UV curing of paper coatings are the colorless varnishing of labels, record sleeves or book covers.
For the cited fields of application, the photoinitiator is employed appropriately in amounts of from 0.1 to 20% by weight, preferably from about 0.5 to 5% by weight, based on the photopolymerizable or crosslinkable system. By system in this context is meant the mixture of the photopolymerizable or crosslinkable compound, the photoinitiator and the other fillers and additives, as used in the respective application.
The photoinitiator is generally added to the photopolymerizable systems by means of simple stirred incorporation, since the majority of these systems are liquid or readily soluble. Usually, the initiator dissolves, thereby ensuring its uniform distribution and also the transp
Avar Lajos
Bär René
Sanahuja Victor
Bisulca Anthony A.
Clariant Finance (BVI) Limited
Richter Johann
Witherspoon Sikarl A.
LandOfFree
Benzophenones and the use thereof as photoinitiators does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Benzophenones and the use thereof as photoinitiators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Benzophenones and the use thereof as photoinitiators will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2887654