Benzodiazepine derivatives

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

540509, C07D40104, C07D40304, A61K 3155

Patent

active

055211755

DESCRIPTION:

BRIEF SUMMARY
This application is a national stage application under 35 USC 371 of application PCT/GB93/01600, filed Jul. 28, 1993.
This invention relates to benzodiazepine compounds which are useful as antagonists of cholecystokinin and gastrin receptors.
Cholecystokinins (CCK) and gastrin are structurally related peptides which exist in gastrointestinal tissue and in the central nervous system (see, V. Mutt, Gastrointestinal Hormones, G. B. J. Green, Ed., Raven Press, N.Y., p.169 and G. Nission, ibid. p.127).
Cholecystokinins include CCK-33, a neuropeptide of thirty-three amino acids in its originally isolated form (see, Mutt and Jorpes, Biochem. J. 125, 678 (1971)), its carboxylterminal octapeptide, CCK-8 (also a naturally-occurring neuropeptide and the minimum fully active sequence), and 39- and 12-amino acid forms. Gastrin occurs in 34-, 17- and 14-amino acid forms, with the minimum active sequence being the C-terminal tetrapeptide, Trp-Met-Asp-Phe-NH.sub.2, which is the common structural element shared by both CCK and gastrin.
CCKs are believed to be physiological satiety hormones, thereby possibly playing an important role in appetite regulation (G. P. Smith, Eating and Its Disorders, A. J. Stunkard and E. Stellar, Eds, Raven Press, New York, 1984, p. 67), as well as stimulating colonic motility, gall bladder contraction, pancreatic enzyme secretion and inhibiting gastric emptying. They reportedly co-exist with dopamine in certain mid-brain neurons and thus may also play a role in the functioning of dopaminergic systems in the brain, in addition to serving as neurotransmitters in their own right (see A. J. Prange et al., "Peptides in the Central Nervous System", Ann. Repts. Med. Chem. 17, 31, 33 [1982] and references cited therein; J. A. Williams, Biomed Res. 3 107 [1982]; and J. E. Morley, Life Sci. 30, 479 [1982]).
The primary role of gastrin, on the other hand, appears to be stimulation of the secretion of water and electrolytes from the stomach and, as such, is involved in control of gastric acid and pepsin secretion. Other physiological effects of gastrin then include increased mucosal blood flow and increased antral motility. Rat studies have shown that gastrin has a positive trophic effect on the gastric mucosa, as evidenced by increased DNA, RNA and protein synthesis.
There are at least two subtypes of cholecystokinin receptors termed CCK-A and CCK-B (T. H. Moran et al., "Two brain cholecystokinin receptors: implications for behavioural actions", Brain Res., 362, 175-79 [1986]). Both subtypes are found both in the periphery and in the central nervous system.
CCK and gastrin receptor antagonists have been disclosed for preventing and treating CCK-related and/or gastrin related disorders of the gastrointestinal (GI) and central nervous (CNS) systems of animals, especially mammals, and more especially those of humans. Just as there is some overlap in the biological activities of CCK and gastrin, antagonists also tend to have affinity for both CCK-B receptors and gastrin receptors. Other antagonists have activity at the CCK-A subtype.
Selective CCK antagonists are themselves useful in treating CCK-related disorders of appetite regulatory systems of animals as well as in potentiating and prolonging opiate-mediated analgesia [see P. L. Faris et al., Science 226, 1215 (1984)], thus having utility in the treatment of pain. CCK-B and CCK-A antagonists have also been shown to have a direct analgesic effect [M. F. O'Neill et al., Brain Research, 534 287 (1990)]. Selective CCK and gastrin antagonists are useful in the modulation of behaviour mediated by dopaminergic and serotonergic neuronal systems and thus have utility in the treatment of schizophrenia and depression (Rasmussen et. al., 1991, Eur. J. Pharmacol., 209, 135-138; Woodruff et. al., 1991, Neuropeptides, 19, 45-46; Cervo et. al., 1988, Eur. J. Pharmacol., 158, 53-59), as a palliative for gastrointestinal neoplasms, and in the treatment and prevention of gastrin-related disorders of the gastrointestinal system in humans and animals, such as peptic ulcers,

REFERENCES:
patent: 5302591 (1994-04-01), Fletcher et al.
patent: 5360802 (1994-11-01), Chambers et al.
patent: 5426185 (1995-06-01), Baldwin et al.
"Benzodiazepine Gastrin and Brain Cholecystokinin Receptor Ligands: L-365,260", Mark G. G. Bock, et al., Journal of Medicinal Chemistry, vol. 32, No. 1, Jan. 1989, pp. 13-16.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Benzodiazepine derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Benzodiazepine derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Benzodiazepine derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-786911

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.