Benzene compounds as antiproliferative and cholesterol...

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S466000, C514S513000, C514S524000, C514S602000, C514S603000, C514S604000, C549S439000, C558S413000, C562S012000, C564S087000, C564S089000, C564S090000, C564S092000

Reexamination Certificate

active

06388131

ABSTRACT:

INTRODUCTION
1. Field of the Invention
The field of the invention is a particular class of substituted benzene derivatives and analogs and their use as pharmacologically active agents capable of lowering plasma cholesterol levels and inhibiting abnormal cell proliferation.
2. Background
Atherosclerosis is a leading cause of death in the United States. The disease results from excess cholesterol accumulation in the arterial walls, which forms plaques that inhibit blood flow and promote clot formation, ultimately causing heart attacks, stroke and claudication. A principal source of these cholesterol deposits is the low-density lipoprotein (LDL) particles that are present in the blood. There is a direct correlation between LDL concentration and plaque formation in the arteries. LDL concentration is itself largely regulated by the supply of active LDL cell surface receptors, which bind LDL particles and translocate them from the blood into the cell's interior. Accordingly, the upregulation of LDL receptor expression provides an important therapeutic target.
Lipoprotein disorders have been previously called the hyperlipoproteinemias and defined as the elevation of a lipoprotein level above normal. The hyperlipoproteinemias result in elevations of cholesterol, triglycerides or both, and are clinically important because of their contribution to atherosclerotic diseases and pancreatitis.
Lipoproteins are spherical macromolecular complexes of lipid and protein. The lipid constituents of lipoproteins are esterified and unesterified (free) cholesterol, triglycerides, and phospholipids. Lipoproteins transport cholesterol and triglycerides from sites of absorption and synthesis to sites of utilization. Cholesteryl esters and triglycerides are nonpolar and constitute the hydrophobic core of lipoproteins in varying proportions. The lipoprotein surface coat contains the polar constituents—free cholesterol, phospholipids, and apolipoproteins—that permit these particles to be miscible in plasma.
Cholesterol is used for the synthesis of bile acids in the liver, the manufacture and repair of cell membranes, and the synthesis of steroid hormones. There are both exogenous and endogenous sources of cholesterol. The average American consumes about 450 mg of cholesterol each day and produces an additional 500 to 1,000 mg in the liver and other tissues. Another source is the 500 to 1,000 mg of biliary cholesterol that is secreted into the intestine daily; about 50 percent is reabsorbed (enterohepatic circulation). The rate-limiting enzyme in endogenous cholesterol synthesis is 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Triglycerides, which are nonpolar lipids consisting of a glycerol backbone and three fatty acids of varying length and degrees of saturation, are used for storage in adipose tissue and for energy.
Lipoproteins are classified into groups based upon size, density, electrophoretic mobility, and lipid and protein composition. Very low density lipoproteins (VLDL) are large, triglyceride-rich lipoproteins that are synthesized and secreted by hepatocytes. VLDL interacts with lipoprotein lipase in capillary endothelium, and the core triglycerides are hydrolyzed to provide fatty acids to adipose and muscle tissue. About half of the catabolized VLDL particles are taken up by hepatic LDL receptors and the other half remain in plasma, becoming intermediate-density lipoprotein (IDL). IDL is enriched in cholesteryl esters relative to triglycerides and is gradually converted by hepatic triglyceride lipase to the smaller, denser, cholesterol ester-rich LDL. As IDL is converted to LDL, apolipoprotein E becomes detached, and only one apolipoprotein remains, apo B-100.
LDL normally carries about 75 percent of the circulating cholesterol. Cellular LDL uptake is mediated by a glycoprotein receptor molecule that binds to apo B-100. Approximately 70 percent of LDL is cleared by receptor uptake, and the remainder is removed by a scavenger cell pathway using nonreceptor mechanisms. The LDL receptors span the thickness of the cell's plasma membrane and are clustered in specialized regions where the cell membrane is indented to form craters called coated pits. These pits invaginate to form coated vesicles, where LDL is separated from the receptor and delivered to a lysosome so that digestive enzymes can expose the cholesteryl ester and cleave the ester bond to form free cholesterol. The receptor is recycled to the cell surface.
As free cholesterol liberated from LDL accumulates within cells, there are three important metabolic consequences. First, there is a decrease in the synthesis of HMG-CoA reductase, the enzyme that controls the rate of de novo cholesterol biosynthesis by the cell. Second, there is activation of the enzyme acyl cholesterol acyltransferase (ACAT), which esterifies free cholesterol into cholesterol ester, the cell's storage form of cholesterol. Third, accumulation of cholesterol suppresses the cell's synthesis of new LDL receptors. This feedback mechanism reduces the cell's uptake of LDL from the circulation.
Lipoproteins play a central role in atherosclerosis. This association with the most common cause of death in the developed world defines the principal clinical importance of the hyperlipoproteinemias. Individuals with an elevated cholesterol level are at higher risk for atherosclerosis. Multiple lines of evidence, including epidemiological, autopsy, animal studies and clinical trials, have established that LDL is atherosclerogenic and that the higher the LDL level, the greater the risk of atherosclerosis and its clinical manifestations. A certain degree of LDL elevation appears to be a necessary factor in the development of atherosclerosis, although the process is modified by many other factors (e.g., blood pressure, tobacco use, blood glucose level, antioxidant level, and clotting factors). Acute pancreatitis is another major clinical manifestation of dyslipoproteinemia It is associated with chylomicronemia and elevated VLDL levels. Most patients with acute pancreatitis have triglyceride levels above 2,000 mg/dL, but a 1983 NIH consensus development conference recommended that prophylactic treatment of hypertriglyceridemia should begin when fasting levels exceed 500 mg/dL. The mechanism by which chylomicronemia and elevated VLDL levels cause pancreatitis is unclear. Pancreatic lipase may act on triglycerides in pancreatic capillaries, resulting in the formation of toxic fatty acids that cause inflammation.
Abundant evidence indicates that treatment of hyperlipoproteinemia will diminish or prevent atherosclerotic complications. In addition to a diet that maintains a normal body weight and minimizes concentrations of lipids in plasma, therapeutic agents that lower plasma concentrations of lipoproteins, either by diminishing the production of lipoproteins or by enhancing the efficiency of their removal from plasma, are clinically important.
The most promising class of drugs currently available for the treatment of hyperlipoproteinemia or hypercholesterolemia acts by inhibiting HMG-CoA reductase, the rate-limiting enzyme in endogenous cholesterol synthesis. Drugs of this class competitively inhibit the activity of the enzyme. Eventually, this inhibition leads to a decrease in the endogenous synthesis of cholesterol and by normal homeostatic mechanisms, plasma cholesterol is taken up by LDL receptors to restore the intracellular cholesterol balance.
Through both the release of precursors of LDL and receptor-mediated LDL uptake from the serum, liver cells play a critical role in maintaining serum cholesterol homeostasis. In both man and animal models, an inverse correlation appears to exist between liver LDL receptor expression levels and LDL-associated serum cholesterol levels. In general, higher hepatocyte LDL receptor numbers result in lower LDL-associated serum cholesterol levels. Cholesterol released into hepatocytes can be stored as cholesteryl esters, converted into bile acids and released into the bile duct, or it can enter into an oxycholestero

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Benzene compounds as antiproliferative and cholesterol... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Benzene compounds as antiproliferative and cholesterol..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Benzene compounds as antiproliferative and cholesterol... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2890447

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.