Beneficiation of sulfide minerals

Classifying – separating – and assorting solids – Fluid suspension – Liquid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06732867

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to froth flotation processes for the recovery of metal values from base metal sulfide ores. More particularly, it relates to processes that employ sulfide mineral collectors comprising an N-butoxycarbonyl-O-butylthionocarbamate compound which exhibit excellent metallurgical performance over a broad range of pH values.
2. Description of the Related Art
Froth flotation is a widely used process for beneficiating ores containing valuable minerals. A typical froth flotation process involves intermixing an aqueous slurry containing finely ground ore particles with a frothing or foaming agent to produce a froth. Ore particles that contain the desired mineral are preferentially attracted to the froth because of an affinity between the froth and the exposed mineral on the surfaces of the ore particles. The resulting beneficiated minerals are then collected by separating them from the froth. Chemical reagents known as “collectors” are commonly added to the slurry to increase the selectivity and efficiency of the separation process, see U.S. Pat. No. 4,584,097, which is hereby incorporated herein by reference.
Froth flotation is especially useful for separating finely ground valuable minerals from their associated gangue or for separating valuable minerals from one another. Because of the large scale on which mining operations are typically conducted and the large difference in value between the desired mineral and the associated gangue, even relatively small increases in separation efficiency provide substantial gains in productivity.
SUMMARY OF THE INVENTION
Unexpectedly, it has now been found that N-butoxycarbonyl-O-butylthionocarbamate is a particularly effective collector in froth flotation processes. A preferred embodiment provides a froth flotation process for beneficiating an ore, comprising: forming a slurry comprising water and particles of an ore, the ore containing sulfide minerals; intermixing the slurry with effective amounts of a frothing agent and a collector to form a froth containing beneficiated sulfide minerals, the collector comprising N-butoxycarbonyl-O-butylthionocarbamate; and collecting the beneficiated sulfide minerals.
These and other embodiments are described in greater detail below.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In preferred embodiments, sulfide metal and mineral values are recovered by froth flotation methods in the presence of a collector, the collector comprising N-butoxycarbonyl-O-butylthionocarbamate. The term “N-butoxycarbonyl-O-butylthionocarbamate” includes isomers thereof. For example, N-isobutoxycarbonyl-O-isobutylthionocarbamate and N-butoxycarbonyl-O-isobutylthionocarbamate are examples of preferred N-butoxycarbonyl-O-butylthionocarbamates. Preferably, N-butoxycarbonyl-O-butylthionocarbamates are employed as sulfide collectors in a froth flotation process that provides enhanced beneficiation of sulfide mineral values from base metal sulfide ores over a wide range of pH values and more preferably under, neutral, slightly alkaline and highly alkaline conditions.
N-butoxycarbonyl-O-butylthionocarbamates may be produced in various ways. For example, butyl chloroformate may be reacted with a thiocyanate salt, e.g., sodium thiocyanate, to form a butoxycarbonyl isothiocyanate intermediate. Thiocyanate salts and butyl chlorofofmate may be obtained from commercial sources; butyl chloroformate may also be synthesized by reacting phosgene with butanol. The butoxycarbonyl isothiocyanate intermediate may be reacted with a butyl alcohol, e.g., n-butanol and/or isobutanol, to form the desired N-butoxycarbonyl-O-butylthionocarbamate.
Those skilled in the art understand that the terms “beneficiate”, “benericiation”, and “beneficiated” refer to an ore enrichment process in which the concentration of the desired mineral and/or metal in the ore increases as the process proceeds. For example, a preferred froth flotation process comprises forming a slurry comprising water and particles of an ore, intermixing the slurry with a frothing agent and a collector to form a froth containing beneficiated minerals, and collecting the beneficiated minerals.
The ore particles in the slurry are preferably made by size-reducing the ore to provide ore particles of flotation size, in a manner generally known to those skilled in the art. The particle size to which a particular ore is size-reduced in order to liberate mineral values from associated gangue or non-values, i.e., liberation size, typically varies from ore to ore and may depend on a number of factors, e.g., the geometry of the mineral deposits within the ore, e.g., striations, agglomeration, comatrices, etc. A determination that particles have been size-reduced to liberation size may be made by microscopic examination using methods known to those skilled in the art. Generally, and without limitation, suitable particle sizes vary from about 50 mesh to about 400 mesh. Preferably, the ore is size-reduced to provide flotation sized particles in the range of about +65 mesh to about −200 mesh. Especially preferably for use in the present method are base metal sulfide ores which have been size-reduced to provide from about 14% to about 30% by weight of particles of +100 mesh and from about 45% to about 75% by weight of particles of −200 mesh sizes. Size reduction of the ore may be performed in accordance with any method known to those skilled in this art. For example, the ore can be crushed to −10 mesh size followed by wet grinding in a steel ball mill to the desired mesh size, or pebble milling may be used.
The slurry (also known as a pulp or pulp slurry) may be formed in various ways known to those skilled in the art, e.g.,.by intermixing liberation-sized ore particles with water, by grinding the ore in the presence of water, etc. The pH of the slurry may be adjusted at any stage, e.g., by adding a pH modifier (acid or base) to the slurry or to the, grind during: size reduction, to provide the slurry with any desired pH. Preferred pH modifiers include sulfuric acid and lime. Thus, for example, good beneficiation may be obtained at pulp slurry pH values in the range of about 7 to about 12, and particularly in the pH range of from about 9 to about 11.5. The pH of the slurry may be adjusted at any point in the process of preparing the ore for froth flotation or in the froth flotation process itself. The aqueous slurry of ore particles preferably contains from about 10% to about 60% pulp solids, more preferably about 25% to about 50% pulp solids, most preferably from about 30% to about 40% pulp solids, by weight based on total slurry weight.
In accordance with a preferred embodiment, the flotation of copper, zinc and lead sulfides is performed at a pH in the range of about 6 to about 12, more preferably. about 9 to about 11.5. It has been discovered that the N-butoxycarbonyl-O-butylthionocarbamate collectors provide exceptionally good collector strength, together with excellent collector selectivity, even at reduced collector dosages, when froth flotation is conducted in the aforementioned pH range.
The slurry is preferably: conditioned by intermixing it with effective amounts of a frothing agent and a collector comprising N-butoxycarbonyl-O-butylthionocarbamate to form a froth containing beneficiated sulfide minerals. The frothing agent, collector and slurry may be intermixed in any order. For example, the collector may be added to the slurry and/or to the grind in accordance with conventional methods. By “effective amount” is meant any amount of the respective components which provides a desired level of beneficiation of the desired metal values.
Any frothing agent known to those skilled in the art may be employed in the froth flotation process. Non-limiting examples of suitable frothing agents include: straight or branched chain low molecular weight hydrocarbon alcohols, such as C
6
to C
8
alkanols, 2-ethyl hexanol and 4-methyl-2-pentanol (also known as methyl-isobutyl carbinol or, MIBC), as well as pine

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Beneficiation of sulfide minerals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Beneficiation of sulfide minerals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Beneficiation of sulfide minerals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3251093

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.