Beeswax mimetic substances and methods of operating beehives

Bee culture – Method

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C449S044000

Reexamination Certificate

active

06585557

ABSTRACT:

The present invention relates to apiculture components such as honeycomb foundations, artificial honeycombs, beehive covers, beehive bottom boards, beehive queen excluders, beehive queen cages, beehive cell cups and any other elements and surfaces which are used in a beehive and which are accessible to the bees. The present invention also relates to a method of operating a beehive.
TECHNICAL BACKGROUND
Bees, like all other living things, are subject to disease, pests and parasites. In the commercial production of honey it is necessary to maintain the health of the bee colonies in order to maintain production and also to provide honey of high quality. In relation to the treatment of bee diseases, nowadays fat soluble substances are used, resulting in an increased accumulation of residues in industrially sold beeswax. As the beekeepers are gathering and using the melted wax again and again, from one year to the next, the problem is aggravating every season. Furthermore, pathogens can be spread by using bee wax coming from abroad which has been demonstrated for Paenibacillus larvae, causing American Foulbrood disease in honeybee colonies.
Bee colonies which are infested by the mite Varroa Jacobsoni are inevitably killed unless the beekeeper takes measures against them. One method of control is by spraying, dusting or fumigating with acaricides in the beehive and an effectiveness of 80 to 90% has been reported. In order to increase the effectiveness even further, DE-A-341 7674 suggests the introduction of the acaricide into the wax foundation which will be drawn by the bees into a final honeycomb. One problem with this technique is that is common to reuse bees wax from one year to the next and therefore that the levels of chemicals such as insecticides, fungicides and antibiotics in tho wax may increase with time. There is the danger that chemicals used to ward off insects may find their way into the honey and into the human food chain as well as into beeswax candles. Further, the prolonged exposure of insects, bacteria and fungi to insecticides, fungicides and antibiotics has the effect of selecting and favouring those insects, bacteria and fungi which become resistant by mutation. It is now well understood that the increasing prophylactic use of insecticides, fungicides and antibiotics is accompanied by an increasing resistance to these chemicals so that the pharmaceutical industry is perpetually in a neck-on-neck race with the developing resistance. This has resulted in very conservative treatment strategies when powerful insecticides, fungicides or antibiotics are involved, However, when such chemicals arc used only when there is definite evidence of infection or infestation, there is always the possibility that there is not a 100% eradication of the pest or disease. This means that these pests and diseases may be carried forward to the next years bee colonies. There has been a need for a solution to this problem with beeswax for some time.
The success of a bee colony argues for cohesion of individuals in social activity: as few as 50 bees will form a cluster, with or without a queen, and the same number is sufficient for comb construction. The cluster provides a mechanism for the regulation of the nest temperature and much of the colony's behaviour is mediated through a large series of chemical and tactile interactions. The combs are the result of stimuli acting on the bees and also provide direct stimuli to the bees themselves. The beeswax is first elaborated (mandibulated) and modified to form a comb wax of reasonable stiffness, strength and flexibility. The working properties of the wax and its end-use are finely tuned to the thermal conditions of the nest. One problem in commercially operated beehives is the mechanical stability of man-made beeswax foundations which are drawn into the final honeycombs by the bees. When the beehive temperature approaches the melting point of beeswax (about 62° C.) the mechanical properties of the beeswax reduce which can result in sagging or collapse of the honeycomb. Various attempts have been made to use a more stabile core to the foundations such as paper, aluminium or plastic onto which a thin layer of beeswax is applied. For instance, the beeswax may be applied to a wire mesh, a glass fibre mat (DE-A-4011168) or a fibre board (U.S. Pat. No. 1,672,853). One reason why artificial honeycomb foundations are provided is that energy generated from the available food can be diverted into honey production rather than into beeswax production. Hence, the bees honey production is increased. Despite these attempts to use artificial and natural materials in beehives, foundations still usually consist of a thin plate of beeswax which is mounted on a wooden frame and supported by metal wires. On both sides punched or moulded hexagonal depressions serve as starting points for the formation of honeycomb cells drawn out by the bees. One disadvantage with introducing hard materials into the core of foundations is that the bees often reposition the wax both on one foundation as well as between foundations. This means that when sufficient bees wax has been removed by the bees the underlying hard material is exposed and strips of beeswax may come free.
Attempts have been made to use plastic materials for foundations. For instance, U.S. Pat. No. 1,282,645 describes the use of baekelite as a foundation. However, it is not clear from the historical records whether combs were ever successfully drawn on the backelite material. As far as it is known, a beeswax coating was used over the baekelite but the odour of carbolic acid was not masked completely by the wax and when the bees gnawed through the wax they were repelled. FR-A-1035428 discloses the use of microcrystalline waxes in a foundation but the composition is not recorded as showing mimetic properties. More recently, in U.S. Pat. No. 4,992,073, the use of a mixture of 7.5 to 15% weight of beeswax and a polypropylene copolymer has been proposed. Due to the fact that beeswax is included in this mixture, this is not a completely synthetic foundation and the reuse of contaminated beeswax cannot be eliminated by this known procedure. A similar problem occurs with the beeswax mixture proposed in U.S. Pat. No. 1,582,605 in which a foundation is proposed made from blended vegetable wax and beeswax whereby the outer layer is preferably beeswax. A suitable vegetable wax is considered to be carnauba wax and a satisfactory mixture is said to be 30% carnauba wax and 70% pure bees wax Despite the many proposals for synthetic or partially synthetic foundations, a completely satisfactory result has not been obtained and foundation manufacture is nowadays still very similar to that of one hundred years ago. The foundations may tot be too thick or too hard or the bees will not accept them. However, thin foundations must be structurally sound and able to carry the load of the fully drawn comb full of honey at temperatures experienced inside a beehive, e.g. 35-37° C. Any materials used must also be of relatively low price to remain economically viable. Additional thermal and mechanical loadings may be placed upon the foundation during honey extraction and post-extraction sterilising processes which are usually carried out at such a high temperature that they melt and remove any beeswax which bas been applied to the underlying structure. This means that any inner foundation support (e.g. wire) has to be recoated with beeswax which increases the costs of the final foundation. Last but not least, the bees must also accept the material used in the foundation.
One further aspect of life in a bee-hive influences the choice of suitable materials. It is believed that communication within the hive is carried out by chemical substances which form a “chemical language”. Pheromones are one group of such chemicals which are sometimes called “social chemicals”. Within the beehive these chemicals may be transmitted by contact, i.e. they may be rubbed off the bees onto beeswax and other bees and transported around the hive. Any materi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Beeswax mimetic substances and methods of operating beehives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Beeswax mimetic substances and methods of operating beehives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Beeswax mimetic substances and methods of operating beehives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3003554

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.