Bearing device and method for measuring axial force

Measuring and testing – Dynamometers – Responsive to force

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S862392, C384S448000

Reexamination Certificate

active

06363799

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a bearing device such as a hub unit mounted to a vehicle such as an automobile for example, and to a method for measuring an axial force of the bearing device.
In a conventional hub unit for a vehicle, a rolling bearing of an angular contact type is attached to an outer periphery of a hub wheel, a cylindrical shaft end of the hub wheel is bent diametrically outward by rotary forging and caulked on an end face of an inner ring of the rolling bearing, thereby applying a pre-load to the rolling bearing and preventing the rolling bearing from loosening from the hub unit.
When the caulking operation is carried out, in order to inhibit a caulking force from being applied to the inner ring of the rolling bearing and to inhibit a raceway of the inner ring from being deformed, an annular support jig is used.
When the shaft end of the hub wheel is bent and caulked in the diametrically outward direction, this support jig restrains an outer periphery of a shoulder portion of the inner ring to inhibit the inner ring from being deformed.
This support jig is necessary for improving the performance of the hub unit, but it is troublesome to insert the support jig between the opposed inner ring and outer ring of the rolling bearing so as to bring the support jig into abutment against the outer periphery of the inner ring shoulder portion.
Moreover, even if the inner ring shoulder portion is restrained by the support jig, since the inner ring can be deformed by the rotary forging in this structure, it is necessary to carry out, with high precision, the rotary forging operation itself, therefore and there is a limit for increasing the speed of the operation thereof. For this reason, the conventional hub unit structure is inferior in mass production performance.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a bearing device suitable for mass production and in which the number of assembling steps and assembling time are reduced by making the inner ring such that it is less prone to be deformed so that the precision of the bearing is not affected even if a support jig is not used.
It is another object of the present invention to provide a method for measuring an axial force of the bearing device which can be assembled without using the support jig and which was assembled without restraining the inner ring using the support jig.
Other objects, features and advantages will be apparent from the following description.
According to the first embodiment of the invention, there is provided a bearing device comprising a shaft body having a shaft end formed into a cylindrical shape as a caulking portion; and an angular contact type rolling bearing fitted over an outer periphery of the shaft body; wherein an axially outer edge of an inner ring of the rolling bearing is partially chamfered roundly with a predetermined radius of curvature, the caulking portion comprises a large-diameter portion having an outer diameter substantially coinciding with an inner diameter of an inner periphery of the inner ring and fitted to the inner periphery of the inner ring, and a small-diameter portion having an outer diameter smaller than the inner diameter of the inner ring and extended axially in one axial direction from the large-diameter portion through a predetermined distance, a starting point of the small-diameter portion is located closer to an axially central portion than a chamfer-starting point of the axially outer edge of the inner ring, and the small-diameter portion of the caulking portion is bent diametrically outward and caulked on an end face of the inner ring of the rolling bearing so as to prevent the rolling bearing from falling out from the bearing device and to apply a pre-load to the rolling bearing.
According to the first embodiment of the invention, since the small-diameter portion is smaller than the inner diameter of the inner ring, when it is subjected to a rotary forging using a forging tool for example, a force for deforming the inner ring diametrically outward is not applied to the inner ring. In this state, since the starting point of the small-diameter portion is located closer to the axially central portion than the chamfer-starting point of the axially outer edge of the inner ring, when it is subjected to a rotary forging using a forging tool for example, the small-diameter portion is deformed diametrically outward such that it is extended in the vicinity of the starting point.
When the outer periphery of the small-diameter portion came into contact with the axially outer edge of the inner ring, the force for deforming the inner ring diametrically outward became smaller, a deforming force for deteriorating the circularity of the inner ring is not applied to the inner ring, and as a result, the inner ring is not deformed, and the caulking portion is caulked on the end face of the inner ring as a caulked portion.
From the above reason, according to the first embodiment of the invention, the support jig is unnecessary and thus, the number of assembling steps and assembling time are reduced, and the structure of the hub unit is suitable for mass production.
Preferably, in the first embodiment of the invention, the shaft body is a wheel hub to which a wheel is mounted, the wheel hub having a shaft portion comprising a small-diameter outer peripheral face and a large-diameter outer peripheral face, a shaft end of the shaft portion is the caulking portion, the rolling bearing is a double row angular contact ball bearing having an inner ring of a single raceway fitted over the small-diameter outer peripheral face of the shaft portion of the wheel hub, a single outer ring having two row raceway grooves, a plurality of balls arranged in two rows, and two crown-shaped retainers, the large-diameter outer peripheral face of the shaft portion of the wheel hub is one inner ring, the axially outer edge of the inner ring of the rolling bearing is partially chamfered roundly with a predetermined radius of curvature, and the small-diameter portion of the caulking portion is bent diametrically outward and caulked on an end face of the inner ring of the rolling bearing so as to prevent the rolling bearing from falling out from the bearing device and to apply a pre-load to the rolling bearing.
Further, in the first embodiment of the invention, it is preferable that the small-diameter portion of the caulking portion includes, before the small-diameter portion is caulked, a junction having a tapered face which is reduced in diameter in one axial direction from a starting point of the small-diameter portion, and a shaft end extending in one axial direction from the junction. In this case, the small-diameter portion can smoothly extend along an inner periphery of the inner ring in a state in which the small-diameter portion is not in contact with the inner periphery of the inner ring, and it is effective to prevent the inner ring from being warped by the caulking.
It is preferable that in the first embodiment of the invention, an outer diameter difference between the large-diameter portion and the small-diameter portion of the caulking portion before the small-diameter portion is caulked is 0.1 mm or less. This is preferable because the small-diameter portion can be caulked in a state in which the small-diameter portion is tightly connected to the inner ring without a gap in the caulked state.
According to a second invention, there is provided a bearing device comprising a shaft body whose shaft end is formed into a cylindrical shape as a caulking portion; and an angular contact type rolling bearing fitted over an outer periphery of the shaft body; wherein a counter bore-opposite side shoulder portion in an inner ring of the rolling bearing is provided with a swelling portion which extends diametrically outward with respect to a standard specification product, a thickness of the counter bore-opposite side shoulder portion in the diametrical direction is increased by the swelling portion, the caulking portion of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bearing device and method for measuring axial force does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bearing device and method for measuring axial force, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bearing device and method for measuring axial force will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2885840

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.