Battery servicing system with bridging protection

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electrical power distribution systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S615000, C361S617000, C361S732000, C429S097000, C312S223100

Reexamination Certificate

active

06643122

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to energy storage and, more specifically, to an interlock kit obstructing concurrent access to terminal ends of more than one battery.
BACKGROUND OF THE INVENTION
Lead-acid batteries have long been in use for a wide variety of applications. For example, lead-acid batteries have been used for what have sometimes been termed “stationary” battery applications wherein the batteries provide stand-by power in the event of a power failure. In such applications, the batteries are maintained at full charge in a ready-to-use condition, such as by float maintenance charging at a preset voltage. Some lead-acid batteries, such as valve-regulated lead acid batteries typically utilized in outdoor telecommunications cabinet applications, may have an operational life (“float” life) of 10-15 years.
The next three paragraphs should talk about (1) bridging problems (2) not disconnecting before accessing and (3) battery density.
The high energy content present in batteries used in backup energy reserve power systems presents safety hazards during battery installation, maintenance and use. Significant volume within prior art power systems is often consumed to provide tool access to battery terminals in order to minimize the risk of bridging or shorting between battery terminals or from the terminals to the cabinet enclosure.
In addition, prior art systems do not restrict access to battery terminals when the battery or battery string is connected to an external load or other battery strings in some advantageous battery orientations. Accordingly, service personnel may inadvertently attempt to service a battery in prior art systems while the battery is connected to the external load or other battery strings, posing serious safety hazards. Attempts to rectify this problem have included terminal covers that must be removed to access the battery terminals, but the covers were often not replaced, and they were easily damaged and/or misplaced.
Moreover, the cabinet space allotted for the batteries and access thereto is limited. For example, a common industry standard for such battery cabinets stipulates a cabinet width limited to only 600 mm. However, a significant portion of the space available inside the cabinet is required for access envelopes instead of battery storage. Accordingly, the maximum number of batteries that may be installed into a standard cabinet (“battery density”) is limited by the need to access the batteries once installed in the cabinet. Some battery cabinets of the prior art attempted to cure this deficiency and increase battery density by utilizing shelves configured to slide out and provide access to the more closely arranged batteries. However, such shelves only modestly reduced the clearance required for safe access by tools and/or human appendages, and were accompanied by an increased cost of the entire rack structure.
Accordingly, what is needed in the art is a battery storage and servicing system that does not suffer from the deficiencies found in the prior art.
SUMMARY OF THE INVENTION
To address the above-discussed deficiencies of the prior art, the present invention provides an interlock kit for use with a rack for supporting a first battery having first terminals and a second battery having second terminals. In one embodiment, the interlock kit comprises a partition mount and a partition coupled thereto. The partition mount is couplable to the rack proximate the first battery and the second battery. The partition is translatable between a first battery access position that allows access to ends of the first terminals and obstructs access to the second terminals and a second battery access position that allows access to ends of the second terminals and obstructs access to the first terminals.
The present invention therefore introduces the concept of substantially eliminating the shock hazard conventionally encountered with battery storage configurations having high packing density by at least obstructing access to the terminals of multiple batteries. As discussed below, the present invention also introduces the concept of isolating the batteries from other battery strings and/or an external load before access thereto is allowed, as discussed below. Accordingly, conventional floating-charged batteries may be stored and maintained in high-packing-density configurations without the risk of inadvertently bridging or shorting across the terminals of adjacent batteries.
In one embodiment of the present invention, the interlock kit further comprises an actuator mount and actuator. The actuator mount is couplable to the rack proximate the first battery and the second battery. The partition mount may also be the actuator mount. The actuator is coupled to the actuator mount and translatable between an online position that obstructs translation of the partition and in which the first and second batteries are connected to an external load and an offline position that allows translation of the partition and in which the first and second batteries are disconnected from the external load. In one embodiment, the actuator may engage a disconnect switch to connect and disconnect the first and second batteries to and from the external load. The actuator may also obstruct access to one of the first and second terminal ends when in the online position. Accordingly, the present invention may permit access to a battery in a string of batteries only after the string is disconnected from the external load, thereby preventing inadvertent current from any source other than the string comprising the specific battery being accessed.
In an embodiment to be illustrated and described, the first terminal ends may face the second terminal ends and the partition may interpose the first and second terminals. In this manner, the volume required to access the first terminal ends may at least partially overlap the volume required to access the second terminal ends. Accordingly, a smaller percentage of the battery cabinet volume may be required for first and second terminal end access space.
In one embodiment of the present invention, the interlock kit is for use with a rack that also supports a third battery having third terminals and a fourth battery having fourth terminals. In such an embodiment, the first battery access position may allow access to ends of the third terminals and obstruct access to the fourth terminals, and the second battery access position may allow access to ends of the fourth terminals and obstruct access to the third terminals. In one embodiment, the online position causes all four of the batteries to be connected to the external load and the offline position causes all four of the batteries to be disconnected from the external load.
Of course, those skilled in the art will recognize that the scope of the present invention includes racks that support more than four batteries. In such embodiments, one or two batteries of a battery string may be accessed in the first battery access position such that remaining batteries may not be accessed, the online position may cause one or more batteries in the battery string to be connected to the external load, and the offline position may cause one or more batteries in the battery string to be disconnected from the external load.
The foregoing has outlined preferred and alternative features of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiment as a basis for designing or modifying other structures for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the invention.


REFERENCES:
patent: 4678215 (1987-07-01), Rehbein et al.
pate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery servicing system with bridging protection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery servicing system with bridging protection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery servicing system with bridging protection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120795

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.