Battery powered volatile dispenser having an electrical...

Gas and liquid contact apparatus – Fluid distribution – Pumping

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C261S030000, C261S104000, C261SDIG008, C422S124000

Reexamination Certificate

active

06371450

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
The present invention relates to battery powered, fan-driven volatile dispensers.
The art has produced a variety of fan-driven devices for dispensing volatile materials into the air. Typically such devices include a housing, an air inlet and outlet with an airflow path extending therebetween, a fan to produce an airflow in the airflow path, and a variety of means for introducing the volatile materials into the airflow path. A number of these fan-driven devices utilize battery power to drive the fan.
Of particular relevance to the instant invention are such battery powered devices that utilize a replaceable cartridge or refill assembly for renewing the supply of volatile materials to be dispensed by the device. Dancs et al., U.S. Pat. No. 5,547,616 and Ito et al., European Patent Application, EP 0775441 are specific examples of such devices. The disclosures of these patents and all other publications referred to herein are incorporated herein by reference as if fully set forth.
An important problem for a user of a battery-powered, fan-driven, volatile dispensing device is detecting when either the battery or the volatile material is depleted. A low voltage battery may still turn a fan, for example, but only at a reduced rate so that an inadequate amount of the volatile ingredient is dispensed. Similarly, the volatile supply may be used up before the battery is depleted, with the same result of inadequate amounts of volatile being dispensed. If the volatile ingredient is an air scent, a user might be able to detect inadequate dispensing simply by noticing a reduced amount of scent in the air. However, it can be difficult to notice a lowered level of a volatile when the volatile is an essentially odorless insect control agent.
Muderlak et al., U.S. Pat. No. 5,175,791 uses a timer circuit to step up power over time to the heater utilized to cause the active ingredient to be dispensed. The Muderlak et al. '791 device is not battery driven, does not utilize a fan, and is noted only for its general use of a timer circuit to adjust dispenser function in response to anticipated volatile depletion. Kunze, U.S. Pat. No. 5,370,829, discloses timed operation of a battery-driven fan. However, the timer appears not to be designed to measure or respond to consumption of either battery power or volatile ingredient.
Walz et al., U.S. Pat. No. 4,840,770, does not include a timer or indicator device but does utilize an amount of a gel-like odor control product selected to be sufficient that battery life and the life of the volatile ingredient are about the same. As a consequence, the “product and battery can be installed and replaced at the same time as a unit, thus assuring that an old battery is not left in by mistake.” (Column 7 at Lines 49-52). However, Walz et al. does not teach any effective use-up cue or other response to a partially depleted battery that is may still be capable of turning a fan but only at an inadequately slow rate.
Sullivan et al., U.S. Pat. No. 4,276,236 and Tringali, U.S. Pat. No. 4,035,451, both disclose a cylindrical cartridge having a conventional, cylindrical battery held at the longitudinal axis of the cartridge, with a space between the battery and the outer wall of the cartridge holding a fluted strip of paper bearing active ingredient. The battery is integrally fastened within the cartridge. The Tringali and Sullivan cartridges permanently mount the battery within the same cartridge that carries the device's supply of volatile ingredient. Although no use-up indicator is supplied, at least the battery and volatile material must of necessity be replaced at the same time.
The Dancs et al device does directly address the issue of a battery depletion cue, relating it to volatile use-up. It uses conventional, replaceable batteries, such as D-cells, and a replaceable refill assembly bearing a finite quantity of volatile active ingredient to be dispensed. Volatile active ingredient is loaded on the refill assembly in an amount calculated to be depleted approximately upon the passage through the air flow path of that volume of air that the device's fan will deliver before an initially fresh battery is discharged below a selected level. Thus, depletion of the battery corresponds with active ingredient depletion and signals the need to replace both the battery and the refill assembly.
The Dancs et al device uses a control circuit to sense the condition of the battery, preferably by responding to voltage drop. The control circuit turns off the power to the fan when the battery condition reaches the level that should correspond to or just anticipate active ingredient depletion. The Dancs et al control circuit includes an LED or other small signal light that either is on or off to provide a visual cue to the user that the battery is being drained to a level approaching that at which power to the fan will be turned off. Consequently, a user of the dispensing device is given advance warning of device shut down.
The Dancs et al visible use-up cue can be effective but does present certain disadvantages. It requires a relatively expensive, specialty control circuit that must perform multiple tasks, sensing battery condition, actuating a light, and (eventually) cutting power to the fan. The light can be difficult to see in daylight or other well-illuminated conditions. Even when it is visible, the significance of the light's condition can be ambiguous, confusing a user. For example, does an illuminated red light signal that the device is running or that it is about to stop running? Multiple lights are possible—for example green to indicate that the device is operating and red to indicate an approaching motor turn-off. However, the necessary control circuits and lights add considerable cost to the device.
The art thus is aware of various control mechanisms in fan volatile dispensers, control mechanisms that provide use-up indicators or timing circuits to measure the use or indicate the depletion of either the battery or the volatile material being dispensed. However, such devices typically require lighting circuits for visual cues or provide no affirmative power cut-off prior to a fan's inadequate operation owing to low battery voltage.
Various other devices are believed to exist in the art, and those referred to, above, are by way of example only. A need still exists in battery-powered volatile dispensers for dispensing volatiles for an economical, simple, visually obvious cue for volatile supply use-up, combined with detection of and a visual cue for battery levels inadequate to run a fan at a speed or with a power sufficient to dispense a desired amount of volatile.
BRIEF SUMMARY OF THE INVENTION
The following definitions apply herein:
A fan is defined herein as being “unrestrictedly visible” if it is visible to a user viewing the volatile dispenser from the front when the volatile dispenser is in its normal position of use, without the presence of a visually obstructing grid or similar structure and without the need to remove any part of the volatile dispenser or any volatile reservoir used with the volatile dispenser. A grid or similar structure will be deemed “visually obstructing” if it prevents a viewer from observing more than 40, preferably not more than 30, and most preferably more 20 percent of the fan. Ideally, there is no grid or similar structure at all.
A “visual cue” is a visually detectable change in appearance that serves as a signal to the observer. A “prominent” visual cue in a device is a visual cue that is apparent to a user of the device upon even casual observation under the lighting and distances characteristic of typical daytime use or inspection conditions.
An “effective” level or “effective” amount is that level or amount sufficient to achieve the desired purpose.
A fan is operating at a “dispensing speed” if its speed is sufficient to create an air flow in an am

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery powered volatile dispenser having an electrical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery powered volatile dispenser having an electrical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery powered volatile dispenser having an electrical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2872962

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.