Electricity: battery or capacitor charging or discharging – Cell or battery charger structure – For battery pack
Reexamination Certificate
2000-02-24
2001-10-23
Wong, Peter S. (Department: 2838)
Electricity: battery or capacitor charging or discharging
Cell or battery charger structure
For battery pack
C320S122000
Reexamination Certificate
active
06307349
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
N/A
BACKGROUND OF THE INVENTION
The present invention relates to a battery conditioning system for battery means of portable computerized devices, and particularly to a hand-held device including data storage means for storing data pertinent to the battery means of the device, and to a battery conditioning control system including an external charging circuit equipped for communication with data storage means of the hand-held device and/or of the battery means operatively associated with such device. Preferably the control system is capable of optimizing the performance of a rechargeable electrochemical storage medium while at the same time maximizing its useful life. The invention also relates to control systems generally, and to control systems forming part of hand-held units.
Portable computerized systems are presently being extensively utilized in a wide range of applications. For example, such systems may be utilized in delivery vehicles which are to be away from a central warehouse or the like for a major part of each working day. Recharging operations may take place in locations subject to extremes of temperature. It is particularly crucial to avoid an equipment failure where a portable device is a vital link to the completion of scheduled tasks at remote locations and the like. In such circumstances, a loss of adequate battery power can be just as detrimental as any other malfunction.
Particularly where the battery conditioning control system is to be incorporated in hand-held devices, such control system should be lightweight and compact, and should consume minimum power. For the sake of economy, a microprocessor of a standard design and of minimum complexity, is highly desirable.
It is conceived that a particularly advantageous battery conditioning system is achieved where significant portions of the conditioning circuitry are external to the battery operated portable device, and where the portable device contains data storage means which is capable of reliably and flexibly providing information, e.g., to the external circuitry for optimizing battery conditioning operations. Data storage means may be implemented within a battery pack in order to preserve battery characteristics of that particular battery so that unique battery data may be associated with the battery pack. The saved battery pack data may be accessed by a portable battery powered device in which the battery pack is utilized so that charging and discharging routines may be optimized for the particular battery pack.
SUMMARY OF THE INVENTION
It is a basic objective of the present invention to achieve a conditioning system for hand-held battery powered devices providing increased reliability and useful life, and particularly to provide a charging system for hand-held devices wherein charging operation can be based on the use history and/or other relevant information concerning the specific battery means.
A further object of the present invention is to provide a control system particularly adapted to control battery conditioning of a variety of rechargeable battery means, automatically adaptable to hand-held devices having battery means of different types such as to require different conditioning parameters.
Another object of the invention is to provide a charging current control system for battery powered portable devices which is not only lightweight and compact but which consumes minimum power, and which preferably is adapted to be implemented as an integrated circuit of an economical and simple construction.
An exemplary feature of the invention resides in the provision of a battery conditioning system receptive of different hand-held devices and capable of communication therewith, e.g., to determine the type of conditioning required for respective different internal battery means thereof.
A further feature of the invention relates to a battery conditioning system wherein the system can obtain a relatively accurate indication of the battery energy remaining available for use for one type or a plurality of different types of batteries, and supply the results to a memory means accompanying the battery means during portable operation.
For the sake of recharging of a battery system as rapidly as possible without detriment to an optimum useful life span, battery parameters including battery temperature can be monitored and transmitted to a conditioning system during a charging cycle, and the battery charging current can be adjusted accordingly.
Since a battery may deteriorate when subjected to repeated shallow discharge and recharging cycles, according to the present invention, a count of such shallow charge cycles may be automatically maintained throughout the operating life of the battery system, such that deep discharge cycles may be effected as necessary to maintain desired performance standards.
Furthermore, according to another highly significant feature of the invention, automatically operating battery monitoring and/or conditioning circuitry may be secured with the battery pack for handling as a unit therewith. The monitoring circuitry may receive its operating power from the battery pack during storage or handling such that a total history of the battery pack may be retained for example in a volatile memory circuit where such type of memory otherwise provides optimum characteristics for a portable system. The conditioning circuitry may have means for effecting a deep discharge cycle, and concomitantly with the deep discharge cycle, a measure of actual battery capacity may be obtained. From such measured battery capacity and a continuous measurement of battery current during portable operation, a relatively accurate “fuel gauge” function becomes feasible such that the risk of battery failure during field operation can be essentially eliminated. The performance of a given type of battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use, and other relevant parameters.
In a simplified system in successful use, the conditioning system is incorporated in the portable utilization device such that the programmed processor of the utilization device may itself automatically effect a deep discharge conditioning cycle and/or a deep discharge capacity test. The deep discharge cycle may be effected at a controlled rate, such that the time for discharge from a fully charged condition to a selected discharge condition may itself represent a measure of battery capacity. Instead of directly measuring battery current during use, the programmed processor may maintain a measure of operating time and/or elapsed time during portable operation, so as to provide an indication of remaining battery capacity. A time measure of operating time may be utilized to automatically determine the time duration of the next charging cycle. When both a main battery and a back-up battery are present, the operating time of each may be individually accumulated, and used to control the time duration of the respective recharging operations.
Additional features of a commercial system in successful use include individual charging and discharging circuits for a main battery and a back-up battery for reliable conditioning of the back-up battery independently of the state of the main battery. Desired parameters such as main battery voltage, ambient temperature (e.g., in the main battery case or in the battery compartment), and charging voltage may be obtained by means of an integrated circuit analog to digital converter, which thus replaces several comparators and many precision costly components of a prior implementation.
While in an early embodiment, battery charging current was set using a digital to analog converter to establish a set point for an analog current control loop, it is a feature of a further embodiment herein to provide a digital computer for both computing a desired current set point and for modulating current pulses in the battery charging circuit for maintaining a desired average current. Prefer
Becker Ronald D.
Koenck Steven E.
Miller Phillip
Intermec IP Corp.
McAndrews Held & Malloy Ltd.
Tibbits Pia
Wong Peter S.
LandOfFree
Battery pack having memory does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Battery pack having memory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery pack having memory will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2593176