Electricity: battery or capacitor charging or discharging – Battery or cell discharging – With charging
Utility Patent
1999-07-26
2001-01-02
Tso, Edward H. (Department: 2838)
Electricity: battery or capacitor charging or discharging
Battery or cell discharging
With charging
Utility Patent
active
06169387
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to portable electronic devices which utilize batteries. More particularly, the present invention relates to portable medical devices. Still more particularly, the present invention relates to methods and apparatus for the maintenance and management of the batteries of such portable medical devices.
2. Description of the Prior Art
Battery management is a concern in any portable electronic device, but is a primary concern in portable medical devices. The need for more comprehensive battery maintenance in portable and implantable medical devices has been noted, for example, in U.S. Pat. No. 4,080,558 to Sullivan, U.S. Pat. No. 5,411,537 to Munshi, et. al., U.S. Pat. No. 5,483,165 to Cameron, et. al., and U.S. Pat. No. 5,470,343 to Fincke, et. al.
A defibrillator is a device capable of delivering a preset amount of electrical energy to a patient's heart for the purpose of terminating an arrhythmia. For portable defibrillators, batteries are used to provide the electrical energy delivered. Historically, portable defibrillator maintenance has been problematic due to insufficient means to ensure comprehensive management of the batteries. As portable medical devices are intended for relatively long-term monitoring and, in the case of portable defibrillators, intended for therapeutic shock delivery for patients at risk from sudden cardiac death due to tachyarrhythmias, a comprehensive battery management program is essential.
Historically portable defibrillator design has been concerned with ensuring that the devices function properly when needed. Problems may arise if the batteries of the defibrillators are at less than full capacity or are worn out or are accidentally taken off their chargers so that the batteries are nonfunctional.
Therefore, there is a need in the portable electronic device industry, and, in particular, in the portable medical electronic device industry to implement a comprehensive way of informing the patient, as precisely as possible, of the status of that patient's device, and particularly the status of the device battery. This status should include not only the current conditions of the device battery but also other information, such as an indication of how much time remained in which the device would be operable.
SUMMARY OF THE INVENTION
The present invention is preferably utilized in connection with a patient-worn energy delivery system for imparting electrical therapy to the body of a patient responsive to an occurrence of a treatable condition. The present invention is designed to constantly monitor and comprehensively inform the patient of the condition of the device, and particularly the condition of the device battery.
The system includes a monitor-defibrillator worn by the patient. The monitor-defibrillator monitors the patient's ECG to detect life threatening arrhythmias and delivers a cardioverting or defibrillating shock if needed. The monitor-defibrillator records system operational information and ECG signal data. Periodically the patient is required to off-load this information to a patient base station. This is accomplished when the monitor-defibrillator is connected to a patient base station at the time battery charging is initiated. Thus, the patient base station is coupled with the monitor-defibrillator for periodic battery charging, device maintenance and the offloading of data. When a monitor-defibrillator is inserted into the monitor interface connector, the patient base station retrieves battery status from the monitor. The patient base station analyzes this information and may schedule maintenance operations or patient notifications if certain conditions are met.
The primary functions performed by the patient base station are providing data communication interfaces to the various components of the system, battery pack charging and maintenance, monitor-defibrillator maintenance, monitor-defibrillator data retrieval and storage, facilitating monitor-defibrillator initialization via the physician programming console and providing visual and audible feedback for patient interactions.
The patient base station provides means to simulate the operation of various monitor-defibrillator and electrode harness hardware functions. These enable the patient base station to verify that the monitor-defibrillator and the electrode harness hardware is functioning properly.
A physician programming console is also utilized, which is an IBM PC-AT compatible computer. The physician programming console facilitates programming of the patient base station and the monitor-defibrillator. Also included is an electrode harness, worn by the patient on the chest, which contains electrodes for sensing ECG signals from the heart and large surface area electrodes for delivering therapy pulses to the heart in the event of the occurrence of a treatable arrhythmia.
The monitor-defibrillator indicates the future time or activity level remaining at which the device could operate. The apparatus considers the rates of discharge and the rates of use and the amount of energy taken out of the battery. The device also monitors the number of charge cycles on the battery, the date when the battery was installed and other pertinent information such as battery pack expiration parameters.
The monitor-defibrillator itself includes circuitry to monitor the capacity of the battery. Thus, if the monitor-defibrillator undergoes some kind of abnormality, for example, some component begins drawing more current than the normal average current of the device, the circuit will detect the abnormality and the current will trip a comparator. The comparator alerts the computer and the remaining run time of the battery pack will be adjusted accordingly and can be displayed to the patient.
The patient base station also periodically performs a capacity check on the monitor-defibrillator when the monitor-defibrillator is coupled to the patient base station during charging and maintenance operations. This is a more comprehensive check than the one performed internal to the monitor-defibrillator. The patient base station can discharge the battery fully, charge it up fully and then discharge the battery. The current that's being discharged is precise, thus, over a period of time the processor could calculate whether the actual capacity of the battery is meeting the specifications. Factors such as the amount of charge and the rate of discharge are considered.
Having the capability to perform the monitoring functions on the monitor-defibrillator rather than solely at some remote base station is beneficial because the battery is necessarily contained in the monitor-defibrillator or attached to it via an electrical connector. Thus, if the patient has traveled away from the base station, that patient would have to return to the base station to be certain that sufficient capacity remained in the battery.
Alternatively, the monitor-defibrillator could itself be designed with additional functionality to perform all of the heretofore mentioned functions of the patient base station except, preferably, for the battery recharging function. In such a system, the battery can be a “smart” battery which has an internal memory/processor that can monitor and store information regarding the status of the battery. In this system, a dedicated battery recharger, also having a processor which communicates with the memory/processor in the smart battery can be utilized which does not require the functional capability of a patient base station. The smart battery memory/processor also communicates with the monitor-defibrillator when it is connected thereto.
Furthermore, although the smart battery can have the capability to monitor and determine operational characteristics thereof, it can be desirable that the monitor-defibrillator also independently, and more precisely, monitor the condition of the smart battery, particularly, for example, during a rapid drain condition as when electrical energy is being delivered to a patie
Buchanan Ingersoll P.C.
Lifecor, Inc.
Tso Edward H.
LandOfFree
Battery management apparatus for portable electronic devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Battery management apparatus for portable electronic devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery management apparatus for portable electronic devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2512422