Battery container

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Cell enclosure structure – e.g. – housing – casing – container,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S176000, C429S163000

Reexamination Certificate

active

06187474

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to a battery container and, more specifically, to a battery container having a handle for lifting the container and a battery received within the container.
BACKGROUND OF THE INVENTION
In our complex society today, numerous systems rely upon electrical power to function properly. Under normal circumstances, operating power is provided by the commercial AC power distribution systems for heat, air conditioning, traffic lights, cooking, telecommunications, etc. Since many, if not all, major power distribution lines are located on poles or towers, a natural disaster, such as a tornado, hurricane, or blizzard, frequently causes the loss of commercial AC power. The failure of commercial AC power may constitute a significant danger to life or property depending upon the system impacted. For instance, failure of AC power supplying the lighting or air conditioning in a hospital or nursing home could readily result in loss of life. Therefore, backup power systems have been developed to assure that the loss of primary power does not seriously affect critical systems.
The one critical system which is most often taken for granted is the telecommunications system. Significantly, when an emergency occurs, virtually everyone expects that telephone communications will remain unaffected. Clearly this is essential; since it is through the telephone that we normally summon medical or rescue aid. Therefore, because of this essential nature, the telecommunications system has been provided with a complex backup power system in the event of commercial AC power failure.
Traditionally, backup electricity for telecommunications has been achieved by dispersing batteries throughout the telecommunications system to power the necessary switches, amplifiers, etc., of the system. These batteries, amounting to millions worldwide, may be located in special rooms, atop a telephone pole, or even atop a mountain, depending upon the local system needs. These batteries may be in place for years before a power failure requires them. These batteries, which are typically a lead-acid type, employ a very well understood and proven technology. However, the batteries still require physical maintenance from time to time, eventually do fail, and must be replaced. Because of the nature of the components, the batteries are inherently extremely heavy per unit volume. Some of the portable batteries used in telecommunications backup weigh as much as 120 pounds each. Additionally, the lead is very toxic and, when no longer useable, must be properly recycled. The acid electrolyte is also a significant hazard to those who must service the batteries, or to anyone who comes in contact with them. Therefore, handling the batteries must be as safe as possible with little chance of an accident. Dropping a battery could cause a very undesirable chemical spill, and cause possible injury to the technician.
Typically, telecommunications backup batteries are located within a steel case, with handles at opposing ends. However, as in many areas, an emphasis on optimal use of space drives a requirement to make the batteries and their cases as small as possible. Unfortunately, the batteries have been optimized to such an extent that the emphasis on space savings has shifted to the case. As the battery case is relatively thin steel, little can be done to reduce case size.
One area of the case that has only infrequent, although important, usage is the handle used for lifting. Whatever material is used for the handle, it must be: (a) resistant to the acid electrolyte in the batteries, (b) fire resistant, or at least not support combustion, and (c) of sufficient strength to support the battery weight. Previous handles have comprised metal, plastic, and synthetic cloth. Metal handles, although meeting all of the above criteria, are somewhat bulky, and thus do not help solve the space problem. Metal handles also will conduct electricity, and therefore pose something of an electrical shorting problem. Some plastics meet (b) and (c) above, but are not resistant to the acid. Most synthetic cloths, such as KEVLAR® and NOMEX® are also not acid resistant. The one material found to meet all of the above criteria is a fiber made of RYTON™ (polyphenylene sulfide—PPS). PPS has been successfully used for battery handles of the type described in U.S. Pat. No. 5,565,283 to Chalasani et al, However, the design of Chalasani requires a significant amount of PPS, which is quite expensive. Therefore, it would be highly desirable to produce a design which uses significantly less material for each handle.
Accordingly, what is needed in the art is a battery handle that is both fire and acid resistant, has a minimal profile, and is cheaper to manufacture than the current design.
SUMMARY OF THE INVENTION
To address the above-discussed deficiencies of the prior art, the present invention provides, in one embodiment a battery container. In this particular embodiment, the container comprises a housing having sidewalls and a spacing ridge formed in and extending outwardly from the side walls. The spacing ridge forms a groove on an interior surface of the walls and has a slot formed in the spacing ridge at first and second opposing ends of the housing. In an alternate embodiment, the spacing ridge has a plurality of slots formed on opposing ends of the container. Typically, two adjacent slots are formed on each end such that opposing ends of the handle may engage the retaining pin through the slots. The container further comprises a handle and a retaining pin configured to be received within the interior groove adjacent the slot. The handle is cooperatively engageable with the retaining pin to provide a lifting point for the container when the retaining pin is received in the interior groove. The handle and the retaining pin work cooperatively together to provide a handle assembly that can easily be removed from the container, if so desired. It should be specifically understood that it is within the broad scope of the present invention that the handle may be removable from the container, if so desired, by removing or detaching it from the retaining pin.
When the handle is cooperatively engaged with the retaining pin, both the retaining pin and handle are held in place with respect to the container. However, in an alternative embodiment, the container is configured to receive a battery therein such that the battery secures the retaining pin in the interior groove in the event that the handle is removed.
In another embodiment, the container further comprises a battery connector having battery contacts formed thereon. In yet another embodiment, the container may be configured (i.e., designed or formed) to be received in an equipment bay frame for a power system.
In another embodiment, the handle comprises a material having a securing end configured to extend through the slot and cooperatively engage and secure the handle to the retaining pin and a grasping end. The grasping end, of course, extends outwardly from the container to provide a user with a grasping surface so that the container may be lifted. In an advantageous embodiment, the container will have handles attached to the opposing ends of the container. The material should have a tensile strength sufficient to lift the container and a battery contained within the container. In another aspect of this particular embodiment, the material is a flexible strap having opposing ends that are securable to the strap to form opposing loops. In an alternative embodiment, the material comprises a metallic material having a securing end configured to extend through the slot and cooperatively engage and secure the handle to the retaining pin.
In another embodiment, the spacing ridge includes a first slot positioned adjacent a second slot and the handle comprises a material having a first end configured to extend through the first slot and a second end configured to extend through the second slot. The first and second ends are configured to cooperatively engage

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery container does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery container, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery container will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2586050

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.