Electricity: battery or capacitor charging or discharging – One cell or battery charges another
Reexamination Certificate
2000-04-06
2001-08-28
Wong, Peter S. (Department: 2838)
Electricity: battery or capacitor charging or discharging
One cell or battery charges another
Reexamination Certificate
active
06281660
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a battery charger for an electric vehicle, which charges a main battery for feeding drive power to a motor.
2. Description of the Related Art
Electronic vehicles are generally classified into an ordinary electric vehicle which uses only a motor as the drive source for running and a hybrid vehicle which uses both the engine and motor as its drive sources. The hybrid vehicle fundamentally requires no external charging but needs the motor power to start the engine. When the main battery which feeds power to the motor is discharged, therefore, it is not possible to drive the hybrid vehicle as well as the ordinary electric vehicle which has the motor as its sole drive source. Therefore, even a hybrid vehicle should be equipped with some means which can charge the main battery in an emergency, in addition to the normal vehicle-mounted charging system.
One example of known means for charging the main battery in an emergency is a charger which charges the main battery of a vehicle where the charger is installed by using both a DC 12-V battery source installed in this vehicle and a DC 12-V battery source installed in another gasoline-engine vehicle or the like. Japanese Unexamined Patent Application Publication (KOKAI) No. 9-284913 discloses a technique of eliminating a charger from a vehicle, thus improving the usage of the vehicle and making the vehicle lighter. This is specifically accomplished by installing a charging motor, which is drivable on a domestic supply voltage or a commercially available supply voltage, in a vehicle and supplying the charging motor with power from outside the vehicle to thereby charge the battery with the generator output.
When a charger is not installed in a vehicle, however, it is not possible to cope with an emergency case where a domestic supply voltage or a commercially available supply voltage cannot be used as an external supply voltage. Even if a charger which uses a DC 12-V battery designed for usage in an emergency is installed in a vehicle, on the other hand, this charger is not used frequently. If this charger fails, therefore, it is likely that a user does not notice the failure until its use in an emergency.
The present inventor proposed a solution to this shortcoming in Japanese Patent Application No. 10-300082. The charger according to this prior art comprises a DC-AC inverter which converts a DC input voltage to an AC voltage and boosts the AC voltage to a predetermined voltage level and a voltage doubler section which boosts the AC voltage output from the DC-AC inverter or an AC voltage input without intervening the DC-AC inverter to a doubled voltage and rectifies this voltage. This single charger can therefore allow the main battery to be charged with both a DC voltage supply and an AC voltage supply.
As it is not often that the main battery is charged, the voltage doubler section is not used frequently. When the voltage doubler section has an ordinary structure comprising diodes and capacitors, the capacitors are deteriorated if the voltage doubler section is not used over a long period of time. While the prior art proposed by the present inventor can improve the frequency of usage of the DC-AC inverter, the prior art still has a room for improvement on such deterioration of capacitors.
The capacitors that constitute a voltage doubler section are normally electrolytic capacitors. It is well known that if electrolytic capacitors are not used for a long period of time, the impairment of the chemical conversion coating is apt to be quickened in a loadless state.
If the main battery is to be charged in an emergency with the voltage doubler section unused over a long period of time, therefore, a large leak current may flow through the electrolytic capacitors of the voltage doubler section so that the output voltage does not rise to a specified level.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a battery charger for an electric vehicle, which prevents capacitors in an incorporated voltage doubler section from being deteriorated even when the voltage doubler section is not used over a long period of time and can permit a main battery to be charged reliably in an emergency.
To achieve the above object, according to one aspect of this invention, there is provided a battery charger for an electric vehicle equipped with a main battery for feeding drive power to motors, which comprises a voltage doubler section having capacitors for rectifying and boosting an AC input voltage to a doubled voltage; a converter section for converting a DC input voltage to an AC voltage and boosting the AC voltage to a predetermined voltage level and normally applying the AC voltage of the predetermined voltage level to the capacitors of the voltage doubler section; and a switch section, intervened between the main battery and the voltage doubler section, for disconnecting the main battery from the voltage doubler section when the main battery is not charged and connecting the main battery to the voltage doubler section at a time of charging the main battery.
This battery charger may further comprise an electrical outlet for external input and output, provided between the converter section and the voltage doubler section, for inputting an AC voltage from an external voltage supply to the voltage doubler section and outputting the AC voltage from the converter section to an external unit.
In the battery charger according to this invention or the modification, the switch section may be constituted by an electromagnetic relay which performs a time delay operation at a predetermined charge time.
When the main battery for feeding drive power to motors is not charged, the main battery is disconnected from the voltage doubler section and an AC voltage from the converter section is always applied to the capacitors of the voltage doubler section. In an emergency where the main battery needs to be charged, the main battery is connected to the voltage doubler section so that the main battery is charged with the rectified DC output of the voltage doubler section.
In this case, providing the electrical outlet for external input and output between the converter section and the voltage doubler section can permit an AC voltage from an external voltage supply to be input to the voltage doubler section without intervening the converter section, thereby charging the main battery. When the main battery need not be charged, the AC output from the converter section can be acquired from the electrical outlet and used for other purposes. Further, as the switch section is constituted by an electromagnetic relay which performs a time delay operation at a predetermined charge time, it is possible to charge the main battery only for the predetermined charge time and prevent overcharging of the main battery.
REFERENCES:
patent: 5448152 (1995-09-01), Albright
patent: 6037744 (1998-07-01), Rhodes
patent: 6037745 (1998-07-01), Koike et al.
patent: 9284913 (1997-10-01), None
patent: 10300082 (2000-05-01), None
Farber Martin A.
Fuji Jukogyo Kabushiki Kaisha
Tibbits Pia
Wong Peter S.
LandOfFree
Battery charger for electric vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Battery charger for electric vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery charger for electric vehicle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2469246